ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst2g Unicode version

Theorem fconst2g 5711
Description: A constant function expressed as a cross product. (Contributed by NM, 27-Nov-2007.)
Assertion
Ref Expression
fconst2g  |-  ( B  e.  C  ->  ( F : A --> { B } 
<->  F  =  ( A  X.  { B }
) ) )

Proof of Theorem fconst2g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvconst 5684 . . . . . . 7  |-  ( ( F : A --> { B }  /\  x  e.  A
)  ->  ( F `  x )  =  B )
21adantlr 474 . . . . . 6  |-  ( ( ( F : A --> { B }  /\  B  e.  C )  /\  x  e.  A )  ->  ( F `  x )  =  B )
3 fvconst2g 5710 . . . . . . 7  |-  ( ( B  e.  C  /\  x  e.  A )  ->  ( ( A  X.  { B } ) `  x )  =  B )
43adantll 473 . . . . . 6  |-  ( ( ( F : A --> { B }  /\  B  e.  C )  /\  x  e.  A )  ->  (
( A  X.  { B } ) `  x
)  =  B )
52, 4eqtr4d 2206 . . . . 5  |-  ( ( ( F : A --> { B }  /\  B  e.  C )  /\  x  e.  A )  ->  ( F `  x )  =  ( ( A  X.  { B }
) `  x )
)
65ralrimiva 2543 . . . 4  |-  ( ( F : A --> { B }  /\  B  e.  C
)  ->  A. x  e.  A  ( F `  x )  =  ( ( A  X.  { B } ) `  x
) )
7 ffn 5347 . . . . 5  |-  ( F : A --> { B }  ->  F  Fn  A
)
8 fnconstg 5395 . . . . 5  |-  ( B  e.  C  ->  ( A  X.  { B }
)  Fn  A )
9 eqfnfv 5593 . . . . 5  |-  ( ( F  Fn  A  /\  ( A  X.  { B } )  Fn  A
)  ->  ( F  =  ( A  X.  { B } )  <->  A. x  e.  A  ( F `  x )  =  ( ( A  X.  { B } ) `  x
) ) )
107, 8, 9syl2an 287 . . . 4  |-  ( ( F : A --> { B }  /\  B  e.  C
)  ->  ( F  =  ( A  X.  { B } )  <->  A. x  e.  A  ( F `  x )  =  ( ( A  X.  { B } ) `  x
) ) )
116, 10mpbird 166 . . 3  |-  ( ( F : A --> { B }  /\  B  e.  C
)  ->  F  =  ( A  X.  { B } ) )
1211expcom 115 . 2  |-  ( B  e.  C  ->  ( F : A --> { B }  ->  F  =  ( A  X.  { B } ) ) )
13 fconstg 5394 . . 3  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> { B } )
14 feq1 5330 . . 3  |-  ( F  =  ( A  X.  { B } )  -> 
( F : A --> { B }  <->  ( A  X.  { B } ) : A --> { B } ) )
1513, 14syl5ibrcom 156 . 2  |-  ( B  e.  C  ->  ( F  =  ( A  X.  { B } )  ->  F : A --> { B } ) )
1612, 15impbid 128 1  |-  ( B  e.  C  ->  ( F : A --> { B } 
<->  F  =  ( A  X.  { B }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   {csn 3583    X. cxp 4609    Fn wfn 5193   -->wf 5194   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206
This theorem is referenced by:  fconst2  5713  cnconst  13028  nninfall  14042
  Copyright terms: Public domain W3C validator