| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconst2g | Unicode version | ||
| Description: A constant function expressed as a cross product. (Contributed by NM, 27-Nov-2007.) |
| Ref | Expression |
|---|---|
| fconst2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst 5762 |
. . . . . . 7
| |
| 2 | 1 | adantlr 477 |
. . . . . 6
|
| 3 | fvconst2g 5788 |
. . . . . . 7
| |
| 4 | 3 | adantll 476 |
. . . . . 6
|
| 5 | 2, 4 | eqtr4d 2240 |
. . . . 5
|
| 6 | 5 | ralrimiva 2578 |
. . . 4
|
| 7 | ffn 5419 |
. . . . 5
| |
| 8 | fnconstg 5467 |
. . . . 5
| |
| 9 | eqfnfv 5671 |
. . . . 5
| |
| 10 | 7, 8, 9 | syl2an 289 |
. . . 4
|
| 11 | 6, 10 | mpbird 167 |
. . 3
|
| 12 | 11 | expcom 116 |
. 2
|
| 13 | fconstg 5466 |
. . 3
| |
| 14 | feq1 5402 |
. . 3
| |
| 15 | 13, 14 | syl5ibrcom 157 |
. 2
|
| 16 | 12, 15 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 |
| This theorem is referenced by: fconst2 5791 cnconst 14624 nninfall 15810 |
| Copyright terms: Public domain | W3C validator |