ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst2g Unicode version

Theorem fconst2g 5774
Description: A constant function expressed as a cross product. (Contributed by NM, 27-Nov-2007.)
Assertion
Ref Expression
fconst2g  |-  ( B  e.  C  ->  ( F : A --> { B } 
<->  F  =  ( A  X.  { B }
) ) )

Proof of Theorem fconst2g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvconst 5747 . . . . . . 7  |-  ( ( F : A --> { B }  /\  x  e.  A
)  ->  ( F `  x )  =  B )
21adantlr 477 . . . . . 6  |-  ( ( ( F : A --> { B }  /\  B  e.  C )  /\  x  e.  A )  ->  ( F `  x )  =  B )
3 fvconst2g 5773 . . . . . . 7  |-  ( ( B  e.  C  /\  x  e.  A )  ->  ( ( A  X.  { B } ) `  x )  =  B )
43adantll 476 . . . . . 6  |-  ( ( ( F : A --> { B }  /\  B  e.  C )  /\  x  e.  A )  ->  (
( A  X.  { B } ) `  x
)  =  B )
52, 4eqtr4d 2229 . . . . 5  |-  ( ( ( F : A --> { B }  /\  B  e.  C )  /\  x  e.  A )  ->  ( F `  x )  =  ( ( A  X.  { B }
) `  x )
)
65ralrimiva 2567 . . . 4  |-  ( ( F : A --> { B }  /\  B  e.  C
)  ->  A. x  e.  A  ( F `  x )  =  ( ( A  X.  { B } ) `  x
) )
7 ffn 5404 . . . . 5  |-  ( F : A --> { B }  ->  F  Fn  A
)
8 fnconstg 5452 . . . . 5  |-  ( B  e.  C  ->  ( A  X.  { B }
)  Fn  A )
9 eqfnfv 5656 . . . . 5  |-  ( ( F  Fn  A  /\  ( A  X.  { B } )  Fn  A
)  ->  ( F  =  ( A  X.  { B } )  <->  A. x  e.  A  ( F `  x )  =  ( ( A  X.  { B } ) `  x
) ) )
107, 8, 9syl2an 289 . . . 4  |-  ( ( F : A --> { B }  /\  B  e.  C
)  ->  ( F  =  ( A  X.  { B } )  <->  A. x  e.  A  ( F `  x )  =  ( ( A  X.  { B } ) `  x
) ) )
116, 10mpbird 167 . . 3  |-  ( ( F : A --> { B }  /\  B  e.  C
)  ->  F  =  ( A  X.  { B } ) )
1211expcom 116 . 2  |-  ( B  e.  C  ->  ( F : A --> { B }  ->  F  =  ( A  X.  { B } ) ) )
13 fconstg 5451 . . 3  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> { B } )
14 feq1 5387 . . 3  |-  ( F  =  ( A  X.  { B } )  -> 
( F : A --> { B }  <->  ( A  X.  { B } ) : A --> { B } ) )
1513, 14syl5ibrcom 157 . 2  |-  ( B  e.  C  ->  ( F  =  ( A  X.  { B } )  ->  F : A --> { B } ) )
1612, 15impbid 129 1  |-  ( B  e.  C  ->  ( F : A --> { B } 
<->  F  =  ( A  X.  { B }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   {csn 3619    X. cxp 4658    Fn wfn 5250   -->wf 5251   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
This theorem is referenced by:  fconst2  5776  cnconst  14413  nninfall  15569
  Copyright terms: Public domain W3C validator