| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconst2g | Unicode version | ||
| Description: A constant function expressed as a cross product. (Contributed by NM, 27-Nov-2007.) |
| Ref | Expression |
|---|---|
| fconst2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst 5826 |
. . . . . . 7
| |
| 2 | 1 | adantlr 477 |
. . . . . 6
|
| 3 | fvconst2g 5852 |
. . . . . . 7
| |
| 4 | 3 | adantll 476 |
. . . . . 6
|
| 5 | 2, 4 | eqtr4d 2265 |
. . . . 5
|
| 6 | 5 | ralrimiva 2603 |
. . . 4
|
| 7 | ffn 5472 |
. . . . 5
| |
| 8 | fnconstg 5522 |
. . . . 5
| |
| 9 | eqfnfv 5731 |
. . . . 5
| |
| 10 | 7, 8, 9 | syl2an 289 |
. . . 4
|
| 11 | 6, 10 | mpbird 167 |
. . 3
|
| 12 | 11 | expcom 116 |
. 2
|
| 13 | fconstg 5521 |
. . 3
| |
| 14 | feq1 5455 |
. . 3
| |
| 15 | 13, 14 | syl5ibrcom 157 |
. 2
|
| 16 | 12, 15 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 |
| This theorem is referenced by: fconst2 5855 cnconst 14902 nninfall 16334 |
| Copyright terms: Public domain | W3C validator |