| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnrnov | GIF version | ||
| Description: The range of an operation expressed as a collection of the operation's values. (Contributed by NM, 29-Oct-2006.) |
| Ref | Expression |
|---|---|
| fnrnov | ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrnfv 5682 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤)}) | |
| 2 | fveq2 5629 | . . . . . 6 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝐹‘〈𝑥, 𝑦〉)) | |
| 3 | df-ov 6010 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2280 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝑥𝐹𝑦)) |
| 5 | 4 | eqeq2d 2241 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑧 = (𝐹‘𝑤) ↔ 𝑧 = (𝑥𝐹𝑦))) |
| 6 | 5 | rexxp 4866 | . . 3 ⊢ (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)) |
| 7 | 6 | abbii 2345 | . 2 ⊢ {𝑧 ∣ ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤)} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)} |
| 8 | 1, 7 | eqtrdi 2278 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 {cab 2215 ∃wrex 2509 〈cop 3669 × cxp 4717 ran crn 4720 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6010 |
| This theorem is referenced by: ovelrn 6160 |
| Copyright terms: Public domain | W3C validator |