ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuunr Unicode version

Theorem djuunr 7194
Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djuunr  |-  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) )  =  ( A B )

Proof of Theorem djuunr
StepHypRef Expression
1 djulf1or 7184 . . . 4  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
2 f1ofo 5551 . . . 4  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  ->  (inl  |`  A ) : A -onto-> ( {
(/) }  X.  A
) )
3 forn 5523 . . . 4  |-  ( (inl  |`  A ) : A -onto->
( { (/) }  X.  A )  ->  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) )
41, 2, 3mp2b 8 . . 3  |-  ran  (inl  |`  A )  =  ( { (/) }  X.  A
)
5 djurf1or 7185 . . . 4  |-  (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B )
6 f1ofo 5551 . . . 4  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  ->  (inr  |`  B ) : B -onto-> ( { 1o }  X.  B
) )
7 forn 5523 . . . 4  |-  ( (inr  |`  B ) : B -onto->
( { 1o }  X.  B )  ->  ran  (inr  |`  B )  =  ( { 1o }  X.  B ) )
85, 6, 7mp2b 8 . . 3  |-  ran  (inr  |`  B )  =  ( { 1o }  X.  B )
94, 8uneq12i 3333 . 2  |-  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) )  =  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) )
10 df-dju 7166 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
119, 10eqtr4i 2231 1  |-  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) )  =  ( A B )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3172   (/)c0 3468   {csn 3643    X. cxp 4691   ran crn 4694    |` cres 4695   -onto->wfo 5288   -1-1-onto->wf1o 5289   1oc1o 6518   ⊔ cdju 7165  inlcinl 7173  inrcinr 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-dju 7166  df-inl 7175  df-inr 7176
This theorem is referenced by:  djuun  7195  eldju  7196  casedm  7214  djudm  7233
  Copyright terms: Public domain W3C validator