Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuunr | Unicode version |
Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.) |
Ref | Expression |
---|---|
djuunr | inl inr ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1or 6990 | . . . 4 inl | |
2 | f1ofo 5418 | . . . 4 inl inl | |
3 | forn 5392 | . . . 4 inl inl | |
4 | 1, 2, 3 | mp2b 8 | . . 3 inl |
5 | djurf1or 6991 | . . . 4 inr | |
6 | f1ofo 5418 | . . . 4 inr inr | |
7 | forn 5392 | . . . 4 inr inr | |
8 | 5, 6, 7 | mp2b 8 | . . 3 inr |
9 | 4, 8 | uneq12i 3259 | . 2 inl inr |
10 | df-dju 6972 | . 2 ⊔ | |
11 | 9, 10 | eqtr4i 2181 | 1 inl inr ⊔ |
Colors of variables: wff set class |
Syntax hints: wceq 1335 cun 3100 c0 3394 csn 3560 cxp 4581 crn 4584 cres 4585 wfo 5165 wf1o 5166 c1o 6350 ⊔ cdju 6971 inlcinl 6979 inrcinr 6980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-1st 6082 df-2nd 6083 df-1o 6357 df-dju 6972 df-inl 6981 df-inr 6982 |
This theorem is referenced by: djuun 7001 eldju 7002 casedm 7020 djudm 7039 |
Copyright terms: Public domain | W3C validator |