ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuunr Unicode version

Theorem djuunr 7000
Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djuunr  |-  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) )  =  ( A B )

Proof of Theorem djuunr
StepHypRef Expression
1 djulf1or 6990 . . . 4  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
2 f1ofo 5418 . . . 4  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  ->  (inl  |`  A ) : A -onto-> ( {
(/) }  X.  A
) )
3 forn 5392 . . . 4  |-  ( (inl  |`  A ) : A -onto->
( { (/) }  X.  A )  ->  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) )
41, 2, 3mp2b 8 . . 3  |-  ran  (inl  |`  A )  =  ( { (/) }  X.  A
)
5 djurf1or 6991 . . . 4  |-  (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B )
6 f1ofo 5418 . . . 4  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  ->  (inr  |`  B ) : B -onto-> ( { 1o }  X.  B
) )
7 forn 5392 . . . 4  |-  ( (inr  |`  B ) : B -onto->
( { 1o }  X.  B )  ->  ran  (inr  |`  B )  =  ( { 1o }  X.  B ) )
85, 6, 7mp2b 8 . . 3  |-  ran  (inr  |`  B )  =  ( { 1o }  X.  B )
94, 8uneq12i 3259 . 2  |-  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) )  =  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) )
10 df-dju 6972 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
119, 10eqtr4i 2181 1  |-  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) )  =  ( A B )
Colors of variables: wff set class
Syntax hints:    = wceq 1335    u. cun 3100   (/)c0 3394   {csn 3560    X. cxp 4581   ran crn 4584    |` cres 4585   -onto->wfo 5165   -1-1-onto->wf1o 5166   1oc1o 6350   ⊔ cdju 6971  inlcinl 6979  inrcinr 6980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-1st 6082  df-2nd 6083  df-1o 6357  df-dju 6972  df-inl 6981  df-inr 6982
This theorem is referenced by:  djuun  7001  eldju  7002  casedm  7020  djudm  7039
  Copyright terms: Public domain W3C validator