ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvbrb GIF version

Theorem funfvbrb 5671
Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.)
Assertion
Ref Expression
funfvbrb (Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))

Proof of Theorem funfvbrb
StepHypRef Expression
1 funfvop 5670 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 df-br 4030 . . 3 (𝐴𝐹(𝐹𝐴) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
31, 2sylibr 134 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹𝐴))
4 funrel 5271 . . 3 (Fun 𝐹 → Rel 𝐹)
5 releldm 4897 . . 3 ((Rel 𝐹𝐴𝐹(𝐹𝐴)) → 𝐴 ∈ dom 𝐹)
64, 5sylan 283 . 2 ((Fun 𝐹𝐴𝐹(𝐹𝐴)) → 𝐴 ∈ dom 𝐹)
73, 6impbida 596 1 (Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  cop 3621   class class class wbr 4029  dom cdm 4659  Rel wrel 4664  Fun wfun 5248  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  fmptco  5724  climdm  11438  dvaddxx  14852  dvmulxx  14853  dviaddf  14854  dvimulf  14855  dvcjbr  14857
  Copyright terms: Public domain W3C validator