ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1strbas Unicode version

Theorem 1strbas 12494
Description: The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
Hypothesis
Ref Expression
1str.g  |-  G  =  { <. ( Base `  ndx ) ,  B >. }
Assertion
Ref Expression
1strbas  |-  ( B  e.  V  ->  B  =  ( Base `  G
) )

Proof of Theorem 1strbas
StepHypRef Expression
1 baseslid 12450 . 2  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
2 1str.g . . 3  |-  G  =  { <. ( Base `  ndx ) ,  B >. }
3 basendxnn 12449 . . . . 5  |-  ( Base `  ndx )  e.  NN
4 opexg 4206 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
53, 4mpan 421 . . . 4  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
6 snexg 4163 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  ->  { <. ( Base `  ndx ) ,  B >. }  e.  _V )
75, 6syl 14 . . 3  |-  ( B  e.  V  ->  { <. (
Base `  ndx ) ,  B >. }  e.  _V )
82, 7eqeltrid 2253 . 2  |-  ( B  e.  V  ->  G  e.  _V )
9 funsng 5234 . . . 4  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  Fun  {
<. ( Base `  ndx ) ,  B >. } )
103, 9mpan 421 . . 3  |-  ( B  e.  V  ->  Fun  {
<. ( Base `  ndx ) ,  B >. } )
112funeqi 5209 . . 3  |-  ( Fun 
G  <->  Fun  { <. ( Base `  ndx ) ,  B >. } )
1210, 11sylibr 133 . 2  |-  ( B  e.  V  ->  Fun  G )
13 snidg 3605 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  -> 
<. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. } )
145, 13syl 14 . . 3  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  { <. (
Base `  ndx ) ,  B >. } )
1514, 2eleqtrrdi 2260 . 2  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  G
)
161, 8, 12, 15strslfvd 12435 1  |-  ( B  e.  V  ->  B  =  ( Base `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576   <.cop 3579   Fun wfun 5182   ` cfv 5188   NNcn 8857   ndxcnx 12391   Basecbs 12394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-inn 8858  df-ndx 12397  df-slot 12398  df-base 12400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator