ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1strbas Unicode version

Theorem 1strbas 12795
Description: The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
Hypothesis
Ref Expression
1str.g  |-  G  =  { <. ( Base `  ndx ) ,  B >. }
Assertion
Ref Expression
1strbas  |-  ( B  e.  V  ->  B  =  ( Base `  G
) )

Proof of Theorem 1strbas
StepHypRef Expression
1 baseslid 12735 . 2  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
2 1str.g . . 3  |-  G  =  { <. ( Base `  ndx ) ,  B >. }
3 basendxnn 12734 . . . . 5  |-  ( Base `  ndx )  e.  NN
4 opexg 4261 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
53, 4mpan 424 . . . 4  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
6 snexg 4217 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  ->  { <. ( Base `  ndx ) ,  B >. }  e.  _V )
75, 6syl 14 . . 3  |-  ( B  e.  V  ->  { <. (
Base `  ndx ) ,  B >. }  e.  _V )
82, 7eqeltrid 2283 . 2  |-  ( B  e.  V  ->  G  e.  _V )
9 funsng 5304 . . . 4  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  Fun  {
<. ( Base `  ndx ) ,  B >. } )
103, 9mpan 424 . . 3  |-  ( B  e.  V  ->  Fun  {
<. ( Base `  ndx ) ,  B >. } )
112funeqi 5279 . . 3  |-  ( Fun 
G  <->  Fun  { <. ( Base `  ndx ) ,  B >. } )
1210, 11sylibr 134 . 2  |-  ( B  e.  V  ->  Fun  G )
13 snidg 3651 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  -> 
<. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. } )
145, 13syl 14 . . 3  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  { <. (
Base `  ndx ) ,  B >. } )
1514, 2eleqtrrdi 2290 . 2  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  G
)
161, 8, 12, 15strslfvd 12720 1  |-  ( B  e.  V  ->  B  =  ( Base `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3622   <.cop 3625   Fun wfun 5252   ` cfv 5258   NNcn 8990   ndxcnx 12675   Basecbs 12678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator