ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1strbas Unicode version

Theorem 1strbas 11895
Description: The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
Hypothesis
Ref Expression
1str.g  |-  G  =  { <. ( Base `  ndx ) ,  B >. }
Assertion
Ref Expression
1strbas  |-  ( B  e.  V  ->  B  =  ( Base `  G
) )

Proof of Theorem 1strbas
StepHypRef Expression
1 baseslid 11852 . 2  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
2 1str.g . . 3  |-  G  =  { <. ( Base `  ndx ) ,  B >. }
3 basendxnn 11851 . . . . 5  |-  ( Base `  ndx )  e.  NN
4 opexg 4108 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
53, 4mpan 418 . . . 4  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
6 snexg 4066 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  ->  { <. ( Base `  ndx ) ,  B >. }  e.  _V )
75, 6syl 14 . . 3  |-  ( B  e.  V  ->  { <. (
Base `  ndx ) ,  B >. }  e.  _V )
82, 7syl5eqel 2199 . 2  |-  ( B  e.  V  ->  G  e.  _V )
9 funsng 5125 . . . 4  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  Fun  {
<. ( Base `  ndx ) ,  B >. } )
103, 9mpan 418 . . 3  |-  ( B  e.  V  ->  Fun  {
<. ( Base `  ndx ) ,  B >. } )
112funeqi 5100 . . 3  |-  ( Fun 
G  <->  Fun  { <. ( Base `  ndx ) ,  B >. } )
1210, 11sylibr 133 . 2  |-  ( B  e.  V  ->  Fun  G )
13 snidg 3518 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  -> 
<. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. } )
145, 13syl 14 . . 3  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  { <. (
Base `  ndx ) ,  B >. } )
1514, 2syl6eleqr 2206 . 2  |-  ( B  e.  V  ->  <. ( Base `  ndx ) ,  B >.  e.  G
)
161, 8, 12, 15strslfvd 11837 1  |-  ( B  e.  V  ->  B  =  ( Base `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1312    e. wcel 1461   _Vcvv 2655   {csn 3491   <.cop 3494   Fun wfun 5073   ` cfv 5079   NNcn 8624   ndxcnx 11793   Basecbs 11796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-cnex 7630  ax-resscn 7631  ax-1re 7633  ax-addrcl 7636
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-iota 5044  df-fun 5081  df-fv 5087  df-inn 8625  df-ndx 11799  df-slot 11800  df-base 11802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator