![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funsng | GIF version |
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
Ref | Expression |
---|---|
funsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {⟨𝐴, 𝐵⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvsn 5263 | . 2 ⊢ Fun ◡{⟨𝐵, 𝐴⟩} | |
2 | cnvsng 5116 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ◡{⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}) | |
3 | 2 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}) |
4 | 3 | funeqd 5240 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Fun ◡{⟨𝐵, 𝐴⟩} ↔ Fun {⟨𝐴, 𝐵⟩})) |
5 | 1, 4 | mpbii 148 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {⟨𝐴, 𝐵⟩}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {csn 3594 ⟨cop 3597 ◡ccnv 4627 Fun wfun 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-fun 5220 |
This theorem is referenced by: fnsng 5265 funsn 5266 funprg 5268 funtpg 5269 setsfun 12499 setsfun0 12500 strle1g 12567 1strbas 12578 |
Copyright terms: Public domain | W3C validator |