ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funsng GIF version

Theorem funsng 5314
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
Assertion
Ref Expression
funsng ((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})

Proof of Theorem funsng
StepHypRef Expression
1 funcnvsn 5313 . 2 Fun {⟨𝐵, 𝐴⟩}
2 cnvsng 5165 . . . 4 ((𝐵𝑊𝐴𝑉) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
32ancoms 268 . . 3 ((𝐴𝑉𝐵𝑊) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
43funeqd 5290 . 2 ((𝐴𝑉𝐵𝑊) → (Fun {⟨𝐵, 𝐴⟩} ↔ Fun {⟨𝐴, 𝐵⟩}))
51, 4mpbii 148 1 ((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  {csn 3632  cop 3635  ccnv 4672  Fun wfun 5262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-fun 5270
This theorem is referenced by:  fnsng  5315  funsn  5316  funprg  5318  funtpg  5319  setsfun  12786  setsfun0  12787  strle1g  12857  1strbas  12868
  Copyright terms: Public domain W3C validator