![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funsng | GIF version |
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
Ref | Expression |
---|---|
funsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvsn 5126 | . 2 ⊢ Fun ◡{〈𝐵, 𝐴〉} | |
2 | cnvsng 4982 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ◡{〈𝐵, 𝐴〉} = {〈𝐴, 𝐵〉}) | |
3 | 2 | ancoms 266 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐵, 𝐴〉} = {〈𝐴, 𝐵〉}) |
4 | 3 | funeqd 5103 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Fun ◡{〈𝐵, 𝐴〉} ↔ Fun {〈𝐴, 𝐵〉})) |
5 | 1, 4 | mpbii 147 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 {csn 3493 〈cop 3496 ◡ccnv 4498 Fun wfun 5075 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-fun 5083 |
This theorem is referenced by: fnsng 5128 funsn 5129 funprg 5131 funtpg 5132 setsfun 11837 setsfun0 11838 strle1g 11892 1strbas 11901 |
Copyright terms: Public domain | W3C validator |