ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofvexi Unicode version

Theorem mpofvexi 6352
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
mpofvex.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
mpofvexi.c  |-  C  e. 
_V
mpofvexi.3  |-  R  e. 
_V
mpofvexi.4  |-  S  e. 
_V
Assertion
Ref Expression
mpofvexi  |-  ( R F S )  e. 
_V
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hints:    B( x)    C( x, y)    R( x, y)    S( x, y)    F( x, y)

Proof of Theorem mpofvexi
StepHypRef Expression
1 mpofvexi.c . . 3  |-  C  e. 
_V
21gen2 1496 . 2  |-  A. x A. y  C  e.  _V
3 mpofvexi.3 . 2  |-  R  e. 
_V
4 mpofvexi.4 . 2  |-  S  e. 
_V
5 mpofvex.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
65mpofvex 6351 . 2  |-  ( ( A. x A. y  C  e.  _V  /\  R  e.  _V  /\  S  e. 
_V )  ->  ( R F S )  e. 
_V )
72, 3, 4, 6mp3an 1371 1  |-  ( R F S )  e. 
_V
Colors of variables: wff set class
Syntax hints:   A.wal 1393    = wceq 1395    e. wcel 2200   _Vcvv 2799  (class class class)co 6001    e. cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287
This theorem is referenced by:  metuex  14519
  Copyright terms: Public domain W3C validator