ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metuex Unicode version

Theorem metuex 14527
Description: Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
Assertion
Ref Expression
metuex  |-  ( A  e.  V  ->  (metUnif `  A )  e.  _V )

Proof of Theorem metuex
Dummy variables  d  a  x  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fg 14521 . . . 4  |-  filGen  =  ( w  e.  _V ,  x  e.  ( fBas `  w )  |->  { y  e.  ~P w  |  ( x  i^i  ~P y )  =/=  (/) } )
2 vpwex 4263 . . . . 5  |-  ~P w  e.  _V
32rabex 4228 . . . 4  |-  { y  e.  ~P w  |  ( x  i^i  ~P y )  =/=  (/) }  e.  _V
4 vex 2802 . . . . . . 7  |-  d  e. 
_V
54dmex 4991 . . . . . 6  |-  dom  d  e.  _V
65dmex 4991 . . . . 5  |-  dom  dom  d  e.  _V
76, 6xpex 4834 . . . 4  |-  ( dom 
dom  d  X.  dom  dom  d )  e.  _V
8 reex 8141 . . . . . . 7  |-  RR  e.  _V
9 rpssre 9868 . . . . . . 7  |-  RR+  C_  RR
108, 9ssexi 4222 . . . . . 6  |-  RR+  e.  _V
1110mptex 5869 . . . . 5  |-  ( a  e.  RR+  |->  ( `' d " ( 0 [,) a ) ) )  e.  _V
1211rnex 4992 . . . 4  |-  ran  (
a  e.  RR+  |->  ( `' d " ( 0 [,) a ) ) )  e.  _V
131, 3, 7, 12mpofvexi 6358 . . 3  |-  ( ( dom  dom  d  X.  dom  dom  d ) filGen ran  ( a  e.  RR+  |->  ( `' d " (
0 [,) a ) ) ) )  e. 
_V
1413ax-gen 1495 . 2  |-  A. d
( ( dom  dom  d  X.  dom  dom  d
) filGen ran  ( a  e.  RR+  |->  ( `' d
" ( 0 [,) a ) ) ) )  e.  _V
15 df-metu 14522 . . 3  |- metUnif  =  ( d  e.  U. ran PsMet  |->  ( ( dom  dom  d  X.  dom  dom  d
) filGen ran  ( a  e.  RR+  |->  ( `' d
" ( 0 [,) a ) ) ) ) )
1615mptfvex 5722 . 2  |-  ( ( A. d ( ( dom  dom  d  X.  dom  dom  d ) filGen ran  ( a  e.  RR+  |->  ( `' d " (
0 [,) a ) ) ) )  e. 
_V  /\  A  e.  V )  ->  (metUnif `  A )  e.  _V )
1714, 16mpan 424 1  |-  ( A  e.  V  ->  (metUnif `  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393    e. wcel 2200    =/= wne 2400   {crab 2512   _Vcvv 2799    i^i cin 3196   (/)c0 3491   ~Pcpw 3649   U.cuni 3888    |-> cmpt 4145    X. cxp 4717   `'ccnv 4718   dom cdm 4719   ran crn 4720   "cima 4722   ` cfv 5318  (class class class)co 6007   RRcr 8006   0cc0 8007   RR+crp 9857   [,)cico 10094  PsMetcpsmet 14507   fBascfbas 14511   filGencfg 14512  metUnifcmetu 14514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-rp 9858  df-fg 14521  df-metu 14522
This theorem is referenced by:  cnfldstr  14530
  Copyright terms: Public domain W3C validator