Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfomnilem Unicode version

Theorem nninfomnilem 13898
Description: Lemma for nninfomni 13899. (Contributed by Jim Kingdon, 10-Aug-2022.)
Hypothesis
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
Assertion
Ref Expression
nninfomnilem  |-  e. Omni
Distinct variable groups:    i, E, k, n    i, q, k, n
Allowed substitution hint:    E( q)

Proof of Theorem nninfomnilem
Dummy variables  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfex 7086 . . 3  |-  e.  _V
2 isomnimap 7101 . . 3  |-  (  e.  _V  ->  ( 
e. Omni 
<-> 
A. r  e.  ( 2o  ^m ) ( E. p  e.  ( r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) ) )
31, 2ax-mp 5 . 2  |-  (  e. Omni  <->  A. r  e.  ( 2o  ^m ) ( E. p  e.  ( r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) )
4 elmapi 6636 . . . . . 6  |-  ( r  e.  ( 2o  ^m )  -> 
r : --> 2o )
5 nninfsel.e . . . . . . . 8  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
65nninfself 13893 . . . . . . 7  |-  E :
( 2o  ^m ) -->
76ffvelrni 5619 . . . . . 6  |-  ( r  e.  ( 2o  ^m )  -> 
( E `  r
)  e. )
84, 7ffvelrnd 5621 . . . . 5  |-  ( r  e.  ( 2o  ^m )  -> 
( r `  ( E `  r )
)  e.  2o )
9 df2o3 6398 . . . . 5  |-  2o  =  { (/) ,  1o }
108, 9eleqtrdi 2259 . . . 4  |-  ( r  e.  ( 2o  ^m )  -> 
( r `  ( E `  r )
)  e.  { (/) ,  1o } )
11 elpri 3599 . . . 4  |-  ( ( r `  ( E `
 r ) )  e.  { (/) ,  1o }  ->  ( ( r `
 ( E `  r ) )  =  (/)  \/  ( r `  ( E `  r ) )  =  1o ) )
1210, 11syl 14 . . 3  |-  ( r  e.  ( 2o  ^m )  -> 
( ( r `  ( E `  r ) )  =  (/)  \/  (
r `  ( E `  r ) )  =  1o ) )
13 fveqeq2 5495 . . . . . . 7  |-  ( p  =  ( E `  r )  ->  (
( r `  p
)  =  (/)  <->  ( r `  ( E `  r
) )  =  (/) ) )
1413rspcev 2830 . . . . . 6  |-  ( ( ( E `  r
)  e.  /\  ( r `  ( E `  r ) )  =  (/) )  ->  E. p  e.  ( r `  p
)  =  (/) )
1514ex 114 . . . . 5  |-  ( ( E `  r )  e.  ->  ( ( r `  ( E `  r ) )  =  (/)  ->  E. p  e.  ( r `  p )  =  (/) ) )
167, 15syl 14 . . . 4  |-  ( r  e.  ( 2o  ^m )  -> 
( ( r `  ( E `  r ) )  =  (/)  ->  E. p  e.  ( r `  p )  =  (/) ) )
17 simpl 108 . . . . . 6  |-  ( ( r  e.  ( 2o 
^m )  /\  ( r `  ( E `  r ) )  =  1o )  ->  r  e.  ( 2o  ^m ) )
18 simpr 109 . . . . . 6  |-  ( ( r  e.  ( 2o 
^m )  /\  ( r `  ( E `  r ) )  =  1o )  ->  ( r `  ( E `  r ) )  =  1o )
195, 17, 18nninfsel 13897 . . . . 5  |-  ( ( r  e.  ( 2o 
^m )  /\  ( r `  ( E `  r ) )  =  1o )  ->  A. p  e.  ( r `  p
)  =  1o )
2019ex 114 . . . 4  |-  ( r  e.  ( 2o  ^m )  -> 
( ( r `  ( E `  r ) )  =  1o  ->  A. p  e.  ( r `  p
)  =  1o ) )
2116, 20orim12d 776 . . 3  |-  ( r  e.  ( 2o  ^m )  -> 
( ( ( r `
 ( E `  r ) )  =  (/)  \/  ( r `  ( E `  r ) )  =  1o )  ->  ( E. p  e.  ( r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) ) )
2212, 21mpd 13 . 2  |-  ( r  e.  ( 2o  ^m )  -> 
( E. p  e.  (
r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) )
233, 22mprgbir 2524 1  |-  e. Omni
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   _Vcvv 2726   (/)c0 3409   ifcif 3520   {cpr 3577    |-> cmpt 4043   suc csuc 4343   omcom 4567   ` cfv 5188  (class class class)co 5842   1oc1o 6377   2oc2o 6378    ^m cmap 6614  ℕxnninf 7084  Omnicomni 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1o 6384  df-2o 6385  df-map 6616  df-nninf 7085  df-omni 7099
This theorem is referenced by:  nninfomni  13899
  Copyright terms: Public domain W3C validator