Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfomnilem Unicode version

Theorem nninfomnilem 12798
Description: Lemma for nninfomni 12799. (Contributed by Jim Kingdon, 10-Aug-2022.)
Hypothesis
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
Assertion
Ref Expression
nninfomnilem  |-  e. Omni
Distinct variable groups:    i, E, k, n    i, q, k, n
Allowed substitution hint:    E( q)

Proof of Theorem nninfomnilem
Dummy variables  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfex 12789 . . 3  |-  e.  _V
2 isomnimap 6921 . . 3  |-  (  e.  _V  ->  ( 
e. Omni 
<-> 
A. r  e.  ( 2o  ^m ) ( E. p  e.  ( r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) ) )
31, 2ax-mp 7 . 2  |-  (  e. Omni  <->  A. r  e.  ( 2o  ^m ) ( E. p  e.  ( r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) )
4 elmapi 6494 . . . . . 6  |-  ( r  e.  ( 2o  ^m )  -> 
r : --> 2o )
5 nninfsel.e . . . . . . . 8  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
65nninfself 12793 . . . . . . 7  |-  E :
( 2o  ^m ) -->
76ffvelrni 5486 . . . . . 6  |-  ( r  e.  ( 2o  ^m )  -> 
( E `  r
)  e. )
84, 7ffvelrnd 5488 . . . . 5  |-  ( r  e.  ( 2o  ^m )  -> 
( r `  ( E `  r )
)  e.  2o )
9 df2o3 6257 . . . . 5  |-  2o  =  { (/) ,  1o }
108, 9syl6eleq 2192 . . . 4  |-  ( r  e.  ( 2o  ^m )  -> 
( r `  ( E `  r )
)  e.  { (/) ,  1o } )
11 elpri 3497 . . . 4  |-  ( ( r `  ( E `
 r ) )  e.  { (/) ,  1o }  ->  ( ( r `
 ( E `  r ) )  =  (/)  \/  ( r `  ( E `  r ) )  =  1o ) )
1210, 11syl 14 . . 3  |-  ( r  e.  ( 2o  ^m )  -> 
( ( r `  ( E `  r ) )  =  (/)  \/  (
r `  ( E `  r ) )  =  1o ) )
13 fveq2 5353 . . . . . . . 8  |-  ( p  =  ( E `  r )  ->  (
r `  p )  =  ( r `  ( E `  r ) ) )
1413eqeq1d 2108 . . . . . . 7  |-  ( p  =  ( E `  r )  ->  (
( r `  p
)  =  (/)  <->  ( r `  ( E `  r
) )  =  (/) ) )
1514rspcev 2744 . . . . . 6  |-  ( ( ( E `  r
)  e.  /\  ( r `  ( E `  r ) )  =  (/) )  ->  E. p  e.  ( r `  p
)  =  (/) )
1615ex 114 . . . . 5  |-  ( ( E `  r )  e.  ->  ( ( r `  ( E `  r ) )  =  (/)  ->  E. p  e.  ( r `  p )  =  (/) ) )
177, 16syl 14 . . . 4  |-  ( r  e.  ( 2o  ^m )  -> 
( ( r `  ( E `  r ) )  =  (/)  ->  E. p  e.  ( r `  p )  =  (/) ) )
18 simpl 108 . . . . . 6  |-  ( ( r  e.  ( 2o 
^m )  /\  ( r `  ( E `  r ) )  =  1o )  ->  r  e.  ( 2o  ^m ) )
19 simpr 109 . . . . . 6  |-  ( ( r  e.  ( 2o 
^m )  /\  ( r `  ( E `  r ) )  =  1o )  ->  ( r `  ( E `  r ) )  =  1o )
205, 18, 19nninfsel 12797 . . . . 5  |-  ( ( r  e.  ( 2o 
^m )  /\  ( r `  ( E `  r ) )  =  1o )  ->  A. p  e.  ( r `  p
)  =  1o )
2120ex 114 . . . 4  |-  ( r  e.  ( 2o  ^m )  -> 
( ( r `  ( E `  r ) )  =  1o  ->  A. p  e.  ( r `  p
)  =  1o ) )
2217, 21orim12d 741 . . 3  |-  ( r  e.  ( 2o  ^m )  -> 
( ( ( r `
 ( E `  r ) )  =  (/)  \/  ( r `  ( E `  r ) )  =  1o )  ->  ( E. p  e.  ( r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) ) )
2312, 22mpd 13 . 2  |-  ( r  e.  ( 2o  ^m )  -> 
( E. p  e.  (
r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) )
243, 23mprgbir 2449 1  |-  e. Omni
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670    = wceq 1299    e. wcel 1448   A.wral 2375   E.wrex 2376   _Vcvv 2641   (/)c0 3310   ifcif 3421   {cpr 3475    |-> cmpt 3929   suc csuc 4225   omcom 4442   ` cfv 5059  (class class class)co 5706   1oc1o 6236   2oc2o 6237    ^m cmap 6472  Omnicomni 6916  ℕxnninf 6917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1o 6243  df-2o 6244  df-map 6474  df-omni 6918  df-nninf 6919
This theorem is referenced by:  nninfomni  12799
  Copyright terms: Public domain W3C validator