Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfomnilem Unicode version

Theorem nninfomnilem 15508
Description: Lemma for nninfomni 15509. (Contributed by Jim Kingdon, 10-Aug-2022.)
Hypothesis
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
Assertion
Ref Expression
nninfomnilem  |-  e. Omni
Distinct variable groups:    i, E, k, n    i, q, k, n
Allowed substitution hint:    E( q)

Proof of Theorem nninfomnilem
Dummy variables  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfex 7180 . . 3  |-  e.  _V
2 isomnimap 7196 . . 3  |-  (  e.  _V  ->  ( 
e. Omni 
<-> 
A. r  e.  ( 2o  ^m ) ( E. p  e.  ( r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) ) )
31, 2ax-mp 5 . 2  |-  (  e. Omni  <->  A. r  e.  ( 2o  ^m ) ( E. p  e.  ( r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) )
4 elmapi 6724 . . . . . 6  |-  ( r  e.  ( 2o  ^m )  -> 
r : --> 2o )
5 nninfsel.e . . . . . . . 8  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
65nninfself 15503 . . . . . . 7  |-  E :
( 2o  ^m ) -->
76ffvelcdmi 5692 . . . . . 6  |-  ( r  e.  ( 2o  ^m )  -> 
( E `  r
)  e. )
84, 7ffvelcdmd 5694 . . . . 5  |-  ( r  e.  ( 2o  ^m )  -> 
( r `  ( E `  r )
)  e.  2o )
9 df2o3 6483 . . . . 5  |-  2o  =  { (/) ,  1o }
108, 9eleqtrdi 2286 . . . 4  |-  ( r  e.  ( 2o  ^m )  -> 
( r `  ( E `  r )
)  e.  { (/) ,  1o } )
11 elpri 3641 . . . 4  |-  ( ( r `  ( E `
 r ) )  e.  { (/) ,  1o }  ->  ( ( r `
 ( E `  r ) )  =  (/)  \/  ( r `  ( E `  r ) )  =  1o ) )
1210, 11syl 14 . . 3  |-  ( r  e.  ( 2o  ^m )  -> 
( ( r `  ( E `  r ) )  =  (/)  \/  (
r `  ( E `  r ) )  =  1o ) )
13 fveqeq2 5563 . . . . . . 7  |-  ( p  =  ( E `  r )  ->  (
( r `  p
)  =  (/)  <->  ( r `  ( E `  r
) )  =  (/) ) )
1413rspcev 2864 . . . . . 6  |-  ( ( ( E `  r
)  e.  /\  ( r `  ( E `  r ) )  =  (/) )  ->  E. p  e.  ( r `  p
)  =  (/) )
1514ex 115 . . . . 5  |-  ( ( E `  r )  e.  ->  ( ( r `  ( E `  r ) )  =  (/)  ->  E. p  e.  ( r `  p )  =  (/) ) )
167, 15syl 14 . . . 4  |-  ( r  e.  ( 2o  ^m )  -> 
( ( r `  ( E `  r ) )  =  (/)  ->  E. p  e.  ( r `  p )  =  (/) ) )
17 simpl 109 . . . . . 6  |-  ( ( r  e.  ( 2o 
^m )  /\  ( r `  ( E `  r ) )  =  1o )  ->  r  e.  ( 2o  ^m ) )
18 simpr 110 . . . . . 6  |-  ( ( r  e.  ( 2o 
^m )  /\  ( r `  ( E `  r ) )  =  1o )  ->  ( r `  ( E `  r ) )  =  1o )
195, 17, 18nninfsel 15507 . . . . 5  |-  ( ( r  e.  ( 2o 
^m )  /\  ( r `  ( E `  r ) )  =  1o )  ->  A. p  e.  ( r `  p
)  =  1o )
2019ex 115 . . . 4  |-  ( r  e.  ( 2o  ^m )  -> 
( ( r `  ( E `  r ) )  =  1o  ->  A. p  e.  ( r `  p
)  =  1o ) )
2116, 20orim12d 787 . . 3  |-  ( r  e.  ( 2o  ^m )  -> 
( ( ( r `
 ( E `  r ) )  =  (/)  \/  ( r `  ( E `  r ) )  =  1o )  ->  ( E. p  e.  ( r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) ) )
2212, 21mpd 13 . 2  |-  ( r  e.  ( 2o  ^m )  -> 
( E. p  e.  (
r `  p )  =  (/)  \/  A. p  e.  ( r `  p )  =  1o ) )
233, 22mprgbir 2552 1  |-  e. Omni
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760   (/)c0 3446   ifcif 3557   {cpr 3619    |-> cmpt 4090   suc csuc 4396   omcom 4622   ` cfv 5254  (class class class)co 5918   1oc1o 6462   2oc2o 6463    ^m cmap 6702  ℕxnninf 7178  Omnicomni 7193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704  df-nninf 7179  df-omni 7194
This theorem is referenced by:  nninfomni  15509
  Copyright terms: Public domain W3C validator