ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioomax Unicode version

Theorem ioomax 9978
Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioomax  |-  ( -oo (,) +oo )  =  RR

Proof of Theorem ioomax
StepHypRef Expression
1 mnfxr 8044 . . 3  |- -oo  e.  RR*
2 pnfxr 8040 . . 3  |- +oo  e.  RR*
3 iooval2 9945 . . 3  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo (,) +oo )  =  { x  e.  RR  |  ( -oo  <  x  /\  x  < +oo ) } )
41, 2, 3mp2an 426 . 2  |-  ( -oo (,) +oo )  =  {
x  e.  RR  | 
( -oo  <  x  /\  x  < +oo ) }
5 rabid2 2667 . . 3  |-  ( RR  =  { x  e.  RR  |  ( -oo  <  x  /\  x  < +oo ) }  <->  A. x  e.  RR  ( -oo  <  x  /\  x  < +oo ) )
6 mnflt 9813 . . . 4  |-  ( x  e.  RR  -> -oo  <  x )
7 ltpnf 9810 . . . 4  |-  ( x  e.  RR  ->  x  < +oo )
86, 7jca 306 . . 3  |-  ( x  e.  RR  ->  ( -oo  <  x  /\  x  < +oo ) )
95, 8mprgbir 2548 . 2  |-  RR  =  { x  e.  RR  |  ( -oo  <  x  /\  x  < +oo ) }
104, 9eqtr4i 2213 1  |-  ( -oo (,) +oo )  =  RR
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2160   {crab 2472   class class class wbr 4018  (class class class)co 5896   RRcr 7840   +oocpnf 8019   -oocmnf 8020   RR*cxr 8021    < clt 8022   (,)cioo 9918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-ioo 9922
This theorem is referenced by:  unirnioo  10003  blssioo  14502
  Copyright terms: Public domain W3C validator