ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccmax Unicode version

Theorem iccmax 10141
Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.)
Assertion
Ref Expression
iccmax  |-  ( -oo [,] +oo )  =  RR*

Proof of Theorem iccmax
StepHypRef Expression
1 mnfxr 8199 . . 3  |- -oo  e.  RR*
2 pnfxr 8195 . . 3  |- +oo  e.  RR*
3 iccval 10112 . . 3  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo [,] +oo )  =  { x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) } )
41, 2, 3mp2an 426 . 2  |-  ( -oo [,] +oo )  =  {
x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) }
5 rabid2 2708 . . 3  |-  ( RR*  =  { x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) } 
<-> 
A. x  e.  RR*  ( -oo  <_  x  /\  x  <_ +oo ) )
6 mnfle 9984 . . . 4  |-  ( x  e.  RR*  -> -oo  <_  x )
7 pnfge 9981 . . . 4  |-  ( x  e.  RR*  ->  x  <_ +oo )
86, 7jca 306 . . 3  |-  ( x  e.  RR*  ->  ( -oo  <_  x  /\  x  <_ +oo ) )
95, 8mprgbir 2588 . 2  |-  RR*  =  { x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) }
104, 9eqtr4i 2253 1  |-  ( -oo [,] +oo )  =  RR*
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   {crab 2512   class class class wbr 4082  (class class class)co 6000   +oocpnf 8174   -oocmnf 8175   RR*cxr 8176    <_ cle 8178   [,]cicc 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-icc 10087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator