ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccmax Unicode version

Theorem iccmax 10070
Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.)
Assertion
Ref Expression
iccmax  |-  ( -oo [,] +oo )  =  RR*

Proof of Theorem iccmax
StepHypRef Expression
1 mnfxr 8128 . . 3  |- -oo  e.  RR*
2 pnfxr 8124 . . 3  |- +oo  e.  RR*
3 iccval 10041 . . 3  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo [,] +oo )  =  { x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) } )
41, 2, 3mp2an 426 . 2  |-  ( -oo [,] +oo )  =  {
x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) }
5 rabid2 2682 . . 3  |-  ( RR*  =  { x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) } 
<-> 
A. x  e.  RR*  ( -oo  <_  x  /\  x  <_ +oo ) )
6 mnfle 9913 . . . 4  |-  ( x  e.  RR*  -> -oo  <_  x )
7 pnfge 9910 . . . 4  |-  ( x  e.  RR*  ->  x  <_ +oo )
86, 7jca 306 . . 3  |-  ( x  e.  RR*  ->  ( -oo  <_  x  /\  x  <_ +oo ) )
95, 8mprgbir 2563 . 2  |-  RR*  =  { x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) }
104, 9eqtr4i 2228 1  |-  ( -oo [,] +oo )  =  RR*
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372    e. wcel 2175   {crab 2487   class class class wbr 4043  (class class class)co 5943   +oocpnf 8103   -oocmnf 8104   RR*cxr 8105    <_ cle 8107   [,]cicc 10012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-icc 10016
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator