ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oacl Unicode version

Theorem oacl 6513
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.) (Constructive proof by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
oacl  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  e.  On )

Proof of Theorem oacl
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oav 6507 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  A ) `  B
) )
2 id 19 . . 3  |-  ( A  e.  On  ->  A  e.  On )
3 vex 2763 . . . . . . . 8  |-  w  e. 
_V
4 suceq 4433 . . . . . . . . 9  |-  ( z  =  w  ->  suc  z  =  suc  w )
5 eqid 2193 . . . . . . . . 9  |-  ( z  e.  _V  |->  suc  z
)  =  ( z  e.  _V  |->  suc  z
)
63sucex 4531 . . . . . . . . 9  |-  suc  w  e.  _V
74, 5, 6fvmpt 5634 . . . . . . . 8  |-  ( w  e.  _V  ->  (
( z  e.  _V  |->  suc  z ) `  w
)  =  suc  w
)
83, 7ax-mp 5 . . . . . . 7  |-  ( ( z  e.  _V  |->  suc  z ) `  w
)  =  suc  w
98eleq1i 2259 . . . . . 6  |-  ( ( ( z  e.  _V  |->  suc  z ) `  w
)  e.  On  <->  suc  w  e.  On )
109ralbii 2500 . . . . 5  |-  ( A. w  e.  On  (
( z  e.  _V  |->  suc  z ) `  w
)  e.  On  <->  A. w  e.  On  suc  w  e.  On )
11 onsuc 4533 . . . . 5  |-  ( w  e.  On  ->  suc  w  e.  On )
1210, 11mprgbir 2552 . . . 4  |-  A. w  e.  On  ( ( z  e.  _V  |->  suc  z
) `  w )  e.  On
1312a1i 9 . . 3  |-  ( A  e.  On  ->  A. w  e.  On  ( ( z  e.  _V  |->  suc  z
) `  w )  e.  On )
142, 13rdgon 6439 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( z  e.  _V  |->  suc  z ) ,  A
) `  B )  e.  On )
151, 14eqeltrd 2270 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    |-> cmpt 4090   Oncon0 4394   suc csuc 4396   ` cfv 5254  (class class class)co 5918   reccrdg 6422    +o coa 6466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-irdg 6423  df-oadd 6473
This theorem is referenced by:  omcl  6514  omv2  6518
  Copyright terms: Public domain W3C validator