ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oacl Unicode version

Theorem oacl 6428
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.) (Constructive proof by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
oacl  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  e.  On )

Proof of Theorem oacl
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oav 6422 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  A ) `  B
) )
2 id 19 . . 3  |-  ( A  e.  On  ->  A  e.  On )
3 vex 2729 . . . . . . . 8  |-  w  e. 
_V
4 suceq 4380 . . . . . . . . 9  |-  ( z  =  w  ->  suc  z  =  suc  w )
5 eqid 2165 . . . . . . . . 9  |-  ( z  e.  _V  |->  suc  z
)  =  ( z  e.  _V  |->  suc  z
)
63sucex 4476 . . . . . . . . 9  |-  suc  w  e.  _V
74, 5, 6fvmpt 5563 . . . . . . . 8  |-  ( w  e.  _V  ->  (
( z  e.  _V  |->  suc  z ) `  w
)  =  suc  w
)
83, 7ax-mp 5 . . . . . . 7  |-  ( ( z  e.  _V  |->  suc  z ) `  w
)  =  suc  w
98eleq1i 2232 . . . . . 6  |-  ( ( ( z  e.  _V  |->  suc  z ) `  w
)  e.  On  <->  suc  w  e.  On )
109ralbii 2472 . . . . 5  |-  ( A. w  e.  On  (
( z  e.  _V  |->  suc  z ) `  w
)  e.  On  <->  A. w  e.  On  suc  w  e.  On )
11 suceloni 4478 . . . . 5  |-  ( w  e.  On  ->  suc  w  e.  On )
1210, 11mprgbir 2524 . . . 4  |-  A. w  e.  On  ( ( z  e.  _V  |->  suc  z
) `  w )  e.  On
1312a1i 9 . . 3  |-  ( A  e.  On  ->  A. w  e.  On  ( ( z  e.  _V  |->  suc  z
) `  w )  e.  On )
142, 13rdgon 6354 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( z  e.  _V  |->  suc  z ) ,  A
) `  B )  e.  On )
151, 14eqeltrd 2243 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726    |-> cmpt 4043   Oncon0 4341   suc csuc 4343   ` cfv 5188  (class class class)co 5842   reccrdg 6337    +o coa 6381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-irdg 6338  df-oadd 6388
This theorem is referenced by:  omcl  6429  omv2  6433
  Copyright terms: Public domain W3C validator