| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcld | Unicode version | ||
| Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| Ref | Expression |
|---|---|
| addcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addcl 8085 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 8056 |
| This theorem is referenced by: muladd11r 8263 negeu 8298 addsubass 8317 subsub2 8335 subsub4 8340 pnpcan 8346 pnncan 8348 addsub4 8350 pnpncand 8482 apreim 8711 addext 8718 aprcl 8754 aptap 8758 divdirap 8805 recp1lt1 9007 cju 9069 cnref1o 9807 modsumfzodifsn 10578 expaddzap 10765 binom2 10833 binom3 10839 sqoddm1div8 10875 mulsubdivbinom2ap 10893 nn0opthlem1d 10902 reval 11275 imval 11276 crre 11283 remullem 11297 imval2 11320 cjreim2 11330 cnrecnv 11336 resqrexlemcalc1 11440 maxabslemab 11632 maxltsup 11644 max0addsup 11645 minabs 11662 bdtrilem 11665 bdtri 11666 addcn2 11736 fsumadd 11832 isumadd 11857 binomlem 11909 efaddlem 12100 ef4p 12120 cosval 12129 cosf 12131 tanval2ap 12139 tanval3ap 12140 resin4p 12144 recos4p 12145 efival 12158 sinadd 12162 cosadd 12163 tanaddap 12165 pythagtriplem1 12703 pythagtriplem12 12713 pythagtriplem16 12717 pythagtriplem17 12718 pcbc 12789 mul4sqlem 12831 4sqlem14 12842 oddennn 12878 mulgdirlem 13604 gsumfzconst 13792 gsumfzfsumlemm 14464 addccncf 15187 limcimolemlt 15251 dvaddxxbr 15288 plyaddlem1 15334 ptolemy 15411 rpcxpadd 15492 binom4 15566 lgsquad2lem1 15673 2lgslem3d1 15692 qdencn 16168 iooref1o 16175 apdifflemr 16188 |
| Copyright terms: Public domain | W3C validator |