![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcld | Unicode version |
Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addcld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | addcl 7999 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 7970 |
This theorem is referenced by: muladd11r 8177 negeu 8212 addsubass 8231 subsub2 8249 subsub4 8254 pnpcan 8260 pnncan 8262 addsub4 8264 pnpncand 8396 apreim 8624 addext 8631 aprcl 8667 aptap 8671 divdirap 8718 recp1lt1 8920 cju 8982 cnref1o 9719 modsumfzodifsn 10470 expaddzap 10657 binom2 10725 binom3 10731 sqoddm1div8 10767 mulsubdivbinom2ap 10785 nn0opthlem1d 10794 reval 10996 imval 10997 crre 11004 remullem 11018 imval2 11041 cjreim2 11051 cnrecnv 11057 resqrexlemcalc1 11161 maxabslemab 11353 maxltsup 11365 max0addsup 11366 minabs 11382 bdtrilem 11385 bdtri 11386 addcn2 11456 fsumadd 11552 isumadd 11577 binomlem 11629 efaddlem 11820 ef4p 11840 cosval 11849 cosf 11851 tanval2ap 11859 tanval3ap 11860 resin4p 11864 recos4p 11865 efival 11878 sinadd 11882 cosadd 11883 tanaddap 11885 pythagtriplem1 12406 pythagtriplem12 12416 pythagtriplem16 12420 pythagtriplem17 12421 pcbc 12492 mul4sqlem 12534 4sqlem14 12545 oddennn 12552 mulgdirlem 13226 gsumfzconst 13414 gsumfzfsumlemm 14086 addccncf 14779 limcimolemlt 14843 dvaddxxbr 14880 plyaddlem1 14926 ptolemy 15000 rpcxpadd 15081 binom4 15152 lgsquad2lem1 15238 2lgslem3d1 15257 qdencn 15587 iooref1o 15594 apdifflemr 15607 |
Copyright terms: Public domain | W3C validator |