| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcld | Unicode version | ||
| Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| Ref | Expression |
|---|---|
| addcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addcl 8050 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 8021 |
| This theorem is referenced by: muladd11r 8228 negeu 8263 addsubass 8282 subsub2 8300 subsub4 8305 pnpcan 8311 pnncan 8313 addsub4 8315 pnpncand 8447 apreim 8676 addext 8683 aprcl 8719 aptap 8723 divdirap 8770 recp1lt1 8972 cju 9034 cnref1o 9772 modsumfzodifsn 10541 expaddzap 10728 binom2 10796 binom3 10802 sqoddm1div8 10838 mulsubdivbinom2ap 10856 nn0opthlem1d 10865 reval 11160 imval 11161 crre 11168 remullem 11182 imval2 11205 cjreim2 11215 cnrecnv 11221 resqrexlemcalc1 11325 maxabslemab 11517 maxltsup 11529 max0addsup 11530 minabs 11547 bdtrilem 11550 bdtri 11551 addcn2 11621 fsumadd 11717 isumadd 11742 binomlem 11794 efaddlem 11985 ef4p 12005 cosval 12014 cosf 12016 tanval2ap 12024 tanval3ap 12025 resin4p 12029 recos4p 12030 efival 12043 sinadd 12047 cosadd 12048 tanaddap 12050 pythagtriplem1 12588 pythagtriplem12 12598 pythagtriplem16 12602 pythagtriplem17 12603 pcbc 12674 mul4sqlem 12716 4sqlem14 12727 oddennn 12763 mulgdirlem 13489 gsumfzconst 13677 gsumfzfsumlemm 14349 addccncf 15072 limcimolemlt 15136 dvaddxxbr 15173 plyaddlem1 15219 ptolemy 15296 rpcxpadd 15377 binom4 15451 lgsquad2lem1 15558 2lgslem3d1 15577 qdencn 15966 iooref1o 15973 apdifflemr 15986 |
| Copyright terms: Public domain | W3C validator |