![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcld | Unicode version |
Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addcld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | addcl 7939 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 7910 |
This theorem is referenced by: muladd11r 8116 negeu 8151 addsubass 8170 subsub2 8188 subsub4 8193 pnpcan 8199 pnncan 8201 addsub4 8203 pnpncand 8335 apreim 8563 addext 8570 aprcl 8606 aptap 8610 divdirap 8657 recp1lt1 8859 cju 8921 cnref1o 9653 modsumfzodifsn 10399 expaddzap 10567 binom2 10635 binom3 10641 sqoddm1div8 10677 mulsubdivbinom2ap 10694 nn0opthlem1d 10703 reval 10861 imval 10862 crre 10869 remullem 10883 imval2 10906 cjreim2 10916 cnrecnv 10922 resqrexlemcalc1 11026 maxabslemab 11218 maxltsup 11230 max0addsup 11231 minabs 11247 bdtrilem 11250 bdtri 11251 addcn2 11321 fsumadd 11417 isumadd 11442 binomlem 11494 efaddlem 11685 ef4p 11705 cosval 11714 cosf 11716 tanval2ap 11724 tanval3ap 11725 resin4p 11729 recos4p 11730 efival 11743 sinadd 11747 cosadd 11748 tanaddap 11750 pythagtriplem1 12268 pythagtriplem12 12278 pythagtriplem16 12282 pythagtriplem17 12283 pcbc 12352 mul4sqlem 12394 oddennn 12396 mulgdirlem 13020 addccncf 14226 limcimolemlt 14273 dvaddxxbr 14305 ptolemy 14385 rpcxpadd 14466 binom4 14537 qdencn 14916 iooref1o 14923 apdifflemr 14936 |
Copyright terms: Public domain | W3C validator |