| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcld | Unicode version | ||
| Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| Ref | Expression |
|---|---|
| addcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addcl 8021 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 7992 |
| This theorem is referenced by: muladd11r 8199 negeu 8234 addsubass 8253 subsub2 8271 subsub4 8276 pnpcan 8282 pnncan 8284 addsub4 8286 pnpncand 8418 apreim 8647 addext 8654 aprcl 8690 aptap 8694 divdirap 8741 recp1lt1 8943 cju 9005 cnref1o 9742 modsumfzodifsn 10505 expaddzap 10692 binom2 10760 binom3 10766 sqoddm1div8 10802 mulsubdivbinom2ap 10820 nn0opthlem1d 10829 reval 11031 imval 11032 crre 11039 remullem 11053 imval2 11076 cjreim2 11086 cnrecnv 11092 resqrexlemcalc1 11196 maxabslemab 11388 maxltsup 11400 max0addsup 11401 minabs 11418 bdtrilem 11421 bdtri 11422 addcn2 11492 fsumadd 11588 isumadd 11613 binomlem 11665 efaddlem 11856 ef4p 11876 cosval 11885 cosf 11887 tanval2ap 11895 tanval3ap 11896 resin4p 11900 recos4p 11901 efival 11914 sinadd 11918 cosadd 11919 tanaddap 11921 pythagtriplem1 12459 pythagtriplem12 12469 pythagtriplem16 12473 pythagtriplem17 12474 pcbc 12545 mul4sqlem 12587 4sqlem14 12598 oddennn 12634 mulgdirlem 13359 gsumfzconst 13547 gsumfzfsumlemm 14219 addccncf 14920 limcimolemlt 14984 dvaddxxbr 15021 plyaddlem1 15067 ptolemy 15144 rpcxpadd 15225 binom4 15299 lgsquad2lem1 15406 2lgslem3d1 15425 qdencn 15758 iooref1o 15765 apdifflemr 15778 |
| Copyright terms: Public domain | W3C validator |