| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > addcld | Unicode version | ||
| Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| addcld.1 | 
 | 
| addcld.2 | 
 | 
| Ref | Expression | 
|---|---|
| addcld | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | addcld.1 | 
. 2
 | |
| 2 | addcld.2 | 
. 2
 | |
| 3 | addcl 8004 | 
. 2
 | |
| 4 | 1, 2, 3 | syl2anc 411 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 7975 | 
| This theorem is referenced by: muladd11r 8182 negeu 8217 addsubass 8236 subsub2 8254 subsub4 8259 pnpcan 8265 pnncan 8267 addsub4 8269 pnpncand 8401 apreim 8630 addext 8637 aprcl 8673 aptap 8677 divdirap 8724 recp1lt1 8926 cju 8988 cnref1o 9725 modsumfzodifsn 10488 expaddzap 10675 binom2 10743 binom3 10749 sqoddm1div8 10785 mulsubdivbinom2ap 10803 nn0opthlem1d 10812 reval 11014 imval 11015 crre 11022 remullem 11036 imval2 11059 cjreim2 11069 cnrecnv 11075 resqrexlemcalc1 11179 maxabslemab 11371 maxltsup 11383 max0addsup 11384 minabs 11401 bdtrilem 11404 bdtri 11405 addcn2 11475 fsumadd 11571 isumadd 11596 binomlem 11648 efaddlem 11839 ef4p 11859 cosval 11868 cosf 11870 tanval2ap 11878 tanval3ap 11879 resin4p 11883 recos4p 11884 efival 11897 sinadd 11901 cosadd 11902 tanaddap 11904 pythagtriplem1 12434 pythagtriplem12 12444 pythagtriplem16 12448 pythagtriplem17 12449 pcbc 12520 mul4sqlem 12562 4sqlem14 12573 oddennn 12609 mulgdirlem 13283 gsumfzconst 13471 gsumfzfsumlemm 14143 addccncf 14836 limcimolemlt 14900 dvaddxxbr 14937 plyaddlem1 14983 ptolemy 15060 rpcxpadd 15141 binom4 15215 lgsquad2lem1 15322 2lgslem3d1 15341 qdencn 15671 iooref1o 15678 apdifflemr 15691 | 
| Copyright terms: Public domain | W3C validator |