| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcld | Unicode version | ||
| Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| Ref | Expression |
|---|---|
| addcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addcl 8052 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 8023 |
| This theorem is referenced by: muladd11r 8230 negeu 8265 addsubass 8284 subsub2 8302 subsub4 8307 pnpcan 8313 pnncan 8315 addsub4 8317 pnpncand 8449 apreim 8678 addext 8685 aprcl 8721 aptap 8725 divdirap 8772 recp1lt1 8974 cju 9036 cnref1o 9774 modsumfzodifsn 10543 expaddzap 10730 binom2 10798 binom3 10804 sqoddm1div8 10840 mulsubdivbinom2ap 10858 nn0opthlem1d 10867 reval 11193 imval 11194 crre 11201 remullem 11215 imval2 11238 cjreim2 11248 cnrecnv 11254 resqrexlemcalc1 11358 maxabslemab 11550 maxltsup 11562 max0addsup 11563 minabs 11580 bdtrilem 11583 bdtri 11584 addcn2 11654 fsumadd 11750 isumadd 11775 binomlem 11827 efaddlem 12018 ef4p 12038 cosval 12047 cosf 12049 tanval2ap 12057 tanval3ap 12058 resin4p 12062 recos4p 12063 efival 12076 sinadd 12080 cosadd 12081 tanaddap 12083 pythagtriplem1 12621 pythagtriplem12 12631 pythagtriplem16 12635 pythagtriplem17 12636 pcbc 12707 mul4sqlem 12749 4sqlem14 12760 oddennn 12796 mulgdirlem 13522 gsumfzconst 13710 gsumfzfsumlemm 14382 addccncf 15105 limcimolemlt 15169 dvaddxxbr 15206 plyaddlem1 15252 ptolemy 15329 rpcxpadd 15410 binom4 15484 lgsquad2lem1 15591 2lgslem3d1 15610 qdencn 16003 iooref1o 16010 apdifflemr 16023 |
| Copyright terms: Public domain | W3C validator |