| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcld | Unicode version | ||
| Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| Ref | Expression |
|---|---|
| addcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addcl 8124 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 8095 |
| This theorem is referenced by: muladd11r 8302 negeu 8337 addsubass 8356 subsub2 8374 subsub4 8379 pnpcan 8385 pnncan 8387 addsub4 8389 pnpncand 8521 apreim 8750 addext 8757 aprcl 8793 aptap 8797 divdirap 8844 recp1lt1 9046 cju 9108 cnref1o 9846 modsumfzodifsn 10618 expaddzap 10805 binom2 10873 binom3 10879 sqoddm1div8 10915 mulsubdivbinom2ap 10933 nn0opthlem1d 10942 reval 11360 imval 11361 crre 11368 remullem 11382 imval2 11405 cjreim2 11415 cnrecnv 11421 resqrexlemcalc1 11525 maxabslemab 11717 maxltsup 11729 max0addsup 11730 minabs 11747 bdtrilem 11750 bdtri 11751 addcn2 11821 fsumadd 11917 isumadd 11942 binomlem 11994 efaddlem 12185 ef4p 12205 cosval 12214 cosf 12216 tanval2ap 12224 tanval3ap 12225 resin4p 12229 recos4p 12230 efival 12243 sinadd 12247 cosadd 12248 tanaddap 12250 pythagtriplem1 12788 pythagtriplem12 12798 pythagtriplem16 12802 pythagtriplem17 12803 pcbc 12874 mul4sqlem 12916 4sqlem14 12927 oddennn 12963 mulgdirlem 13690 gsumfzconst 13878 gsumfzfsumlemm 14551 addccncf 15274 limcimolemlt 15338 dvaddxxbr 15375 plyaddlem1 15421 ptolemy 15498 rpcxpadd 15579 binom4 15653 lgsquad2lem1 15760 2lgslem3d1 15779 qdencn 16395 iooref1o 16402 apdifflemr 16415 |
| Copyright terms: Public domain | W3C validator |