ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzn0 Unicode version

Theorem uzn0 9481
Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.)
Assertion
Ref Expression
uzn0  |-  ( M  e.  ran  ZZ>=  ->  M  =/=  (/) )

Proof of Theorem uzn0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 uzf 9469 . . 3  |-  ZZ>= : ZZ --> ~P ZZ
2 ffn 5337 . . 3  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
3 fvelrnb 5534 . . 3  |-  ( ZZ>=  Fn  ZZ  ->  ( M  e.  ran  ZZ>= 
<->  E. k  e.  ZZ  ( ZZ>= `  k )  =  M ) )
41, 2, 3mp2b 8 . 2  |-  ( M  e.  ran  ZZ>=  <->  E. k  e.  ZZ  ( ZZ>= `  k
)  =  M )
5 uzid 9480 . . . . 5  |-  ( k  e.  ZZ  ->  k  e.  ( ZZ>= `  k )
)
6 ne0i 3415 . . . . 5  |-  ( k  e.  ( ZZ>= `  k
)  ->  ( ZZ>= `  k )  =/=  (/) )
75, 6syl 14 . . . 4  |-  ( k  e.  ZZ  ->  ( ZZ>=
`  k )  =/=  (/) )
8 neeq1 2349 . . . 4  |-  ( (
ZZ>= `  k )  =  M  ->  ( ( ZZ>=
`  k )  =/=  (/) 
<->  M  =/=  (/) ) )
97, 8syl5ibcom 154 . . 3  |-  ( k  e.  ZZ  ->  (
( ZZ>= `  k )  =  M  ->  M  =/=  (/) ) )
109rexlimiv 2577 . 2  |-  ( E. k  e.  ZZ  ( ZZ>=
`  k )  =  M  ->  M  =/=  (/) )
114, 10sylbi 120 1  |-  ( M  e.  ran  ZZ>=  ->  M  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136    =/= wne 2336   E.wrex 2445   (/)c0 3409   ~Pcpw 3559   ran crn 4605    Fn wfn 5183   -->wf 5184   ` cfv 5188   ZZcz 9191   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-neg 8072  df-z 9192  df-uz 9467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator