| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccsupr | Unicode version | ||
| Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccsupr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre 10030 |
. . . 4
| |
| 2 | sstr 3191 |
. . . . 5
| |
| 3 | 2 | ancoms 268 |
. . . 4
|
| 4 | 1, 3 | sylan 283 |
. . 3
|
| 5 | 4 | 3adant3 1019 |
. 2
|
| 6 | ne0i 3457 |
. . 3
| |
| 7 | 6 | 3ad2ant3 1022 |
. 2
|
| 8 | simplr 528 |
. . . 4
| |
| 9 | ssel 3177 |
. . . . . . . 8
| |
| 10 | elicc2 10013 |
. . . . . . . . 9
| |
| 11 | 10 | biimpd 144 |
. . . . . . . 8
|
| 12 | 9, 11 | sylan9r 410 |
. . . . . . 7
|
| 13 | 12 | imp 124 |
. . . . . 6
|
| 14 | 13 | simp3d 1013 |
. . . . 5
|
| 15 | 14 | ralrimiva 2570 |
. . . 4
|
| 16 | breq2 4037 |
. . . . . 6
| |
| 17 | 16 | ralbidv 2497 |
. . . . 5
|
| 18 | 17 | rspcev 2868 |
. . . 4
|
| 19 | 8, 15, 18 | syl2anc 411 |
. . 3
|
| 20 | 19 | 3adant3 1019 |
. 2
|
| 21 | 5, 7, 20 | 3jca 1179 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-icc 9970 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |