| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccsupr | Unicode version | ||
| Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccsupr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre 10077 |
. . . 4
| |
| 2 | sstr 3201 |
. . . . 5
| |
| 3 | 2 | ancoms 268 |
. . . 4
|
| 4 | 1, 3 | sylan 283 |
. . 3
|
| 5 | 4 | 3adant3 1020 |
. 2
|
| 6 | ne0i 3467 |
. . 3
| |
| 7 | 6 | 3ad2ant3 1023 |
. 2
|
| 8 | simplr 528 |
. . . 4
| |
| 9 | ssel 3187 |
. . . . . . . 8
| |
| 10 | elicc2 10060 |
. . . . . . . . 9
| |
| 11 | 10 | biimpd 144 |
. . . . . . . 8
|
| 12 | 9, 11 | sylan9r 410 |
. . . . . . 7
|
| 13 | 12 | imp 124 |
. . . . . 6
|
| 14 | 13 | simp3d 1014 |
. . . . 5
|
| 15 | 14 | ralrimiva 2579 |
. . . 4
|
| 16 | breq2 4048 |
. . . . . 6
| |
| 17 | 16 | ralbidv 2506 |
. . . . 5
|
| 18 | 17 | rspcev 2877 |
. . . 4
|
| 19 | 8, 15, 18 | syl2anc 411 |
. . 3
|
| 20 | 19 | 3adant3 1020 |
. 2
|
| 21 | 5, 7, 20 | 3jca 1180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-icc 10017 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |