ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccsupr Unicode version

Theorem iccsupr 10123
Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.)
Assertion
Ref Expression
iccsupr  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. y  e.  S  y  <_  x ) )
Distinct variable groups:    y, A    x, B, y    x, S, y
Allowed substitution hints:    A( x)    C( x, y)

Proof of Theorem iccsupr
StepHypRef Expression
1 iccssre 10112 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
2 sstr 3209 . . . . 5  |-  ( ( S  C_  ( A [,] B )  /\  ( A [,] B )  C_  RR )  ->  S  C_  RR )
32ancoms 268 . . . 4  |-  ( ( ( A [,] B
)  C_  RR  /\  S  C_  ( A [,] B
) )  ->  S  C_  RR )
41, 3sylan 283 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  S  C_  RR )
543adant3 1020 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  S  C_  RR )
6 ne0i 3475 . . 3  |-  ( C  e.  S  ->  S  =/=  (/) )
763ad2ant3 1023 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  S  =/=  (/) )
8 simplr 528 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  B  e.  RR )
9 ssel 3195 . . . . . . . 8  |-  ( S 
C_  ( A [,] B )  ->  (
y  e.  S  -> 
y  e.  ( A [,] B ) ) )
10 elicc2 10095 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
1110biimpd 144 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  ->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
129, 11sylan9r 410 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  ( y  e.  S  ->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
1312imp 124 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B
) )  /\  y  e.  S )  ->  (
y  e.  RR  /\  A  <_  y  /\  y  <_  B ) )
1413simp3d 1014 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B
) )  /\  y  e.  S )  ->  y  <_  B )
1514ralrimiva 2581 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  A. y  e.  S  y  <_  B )
16 breq2 4063 . . . . . 6  |-  ( x  =  B  ->  (
y  <_  x  <->  y  <_  B ) )
1716ralbidv 2508 . . . . 5  |-  ( x  =  B  ->  ( A. y  e.  S  y  <_  x  <->  A. y  e.  S  y  <_  B ) )
1817rspcev 2884 . . . 4  |-  ( ( B  e.  RR  /\  A. y  e.  S  y  <_  B )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
198, 15, 18syl2anc 411 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
20193adant3 1020 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
215, 7, 203jca 1180 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. y  e.  S  y  <_  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   E.wrex 2487    C_ wss 3174   (/)c0 3468   class class class wbr 4059  (class class class)co 5967   RRcr 7959    <_ cle 8143   [,]cicc 10048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-icc 10052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator