| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccsupr | Unicode version | ||
| Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccsupr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre 10147 |
. . . 4
| |
| 2 | sstr 3232 |
. . . . 5
| |
| 3 | 2 | ancoms 268 |
. . . 4
|
| 4 | 1, 3 | sylan 283 |
. . 3
|
| 5 | 4 | 3adant3 1041 |
. 2
|
| 6 | ne0i 3498 |
. . 3
| |
| 7 | 6 | 3ad2ant3 1044 |
. 2
|
| 8 | simplr 528 |
. . . 4
| |
| 9 | ssel 3218 |
. . . . . . . 8
| |
| 10 | elicc2 10130 |
. . . . . . . . 9
| |
| 11 | 10 | biimpd 144 |
. . . . . . . 8
|
| 12 | 9, 11 | sylan9r 410 |
. . . . . . 7
|
| 13 | 12 | imp 124 |
. . . . . 6
|
| 14 | 13 | simp3d 1035 |
. . . . 5
|
| 15 | 14 | ralrimiva 2603 |
. . . 4
|
| 16 | breq2 4086 |
. . . . . 6
| |
| 17 | 16 | ralbidv 2530 |
. . . . 5
|
| 18 | 17 | rspcev 2907 |
. . . 4
|
| 19 | 8, 15, 18 | syl2anc 411 |
. . 3
|
| 20 | 19 | 3adant3 1041 |
. 2
|
| 21 | 5, 7, 20 | 3jca 1201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-icc 10087 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |