ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringn0 Unicode version

Theorem ringn0 13626
Description: The class of rings is not empty (it is also inhabited, as shown at ring1 13625). (Contributed by AV, 29-Apr-2019.)
Assertion
Ref Expression
ringn0  |-  Ring  =/=  (/)

Proof of Theorem ringn0
StepHypRef Expression
1 vex 2766 . 2  |-  z  e. 
_V
2 eqid 2196 . . 3  |-  { <. (
Base `  ndx ) ,  { z } >. , 
<. ( +g  `  ndx ) ,  { <. <. z ,  z >. ,  z
>. } >. ,  <. ( .r `  ndx ) ,  { <. <. z ,  z
>. ,  z >. }
>. }  =  { <. (
Base `  ndx ) ,  { z } >. , 
<. ( +g  `  ndx ) ,  { <. <. z ,  z >. ,  z
>. } >. ,  <. ( .r `  ndx ) ,  { <. <. z ,  z
>. ,  z >. }
>. }
32ring1 13625 . 2  |-  ( z  e.  _V  ->  { <. (
Base `  ndx ) ,  { z } >. , 
<. ( +g  `  ndx ) ,  { <. <. z ,  z >. ,  z
>. } >. ,  <. ( .r `  ndx ) ,  { <. <. z ,  z
>. ,  z >. }
>. }  e.  Ring )
4 ne0i 3458 . 2  |-  ( {
<. ( Base `  ndx ) ,  { z } >. ,  <. ( +g  `  ndx ) ,  { <. <. z ,  z
>. ,  z >. }
>. ,  <. ( .r
`  ndx ) ,  { <. <. z ,  z
>. ,  z >. }
>. }  e.  Ring  ->  Ring 
=/=  (/) )
51, 3, 4mp2b 8 1  |-  Ring  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    =/= wne 2367   _Vcvv 2763   (/)c0 3451   {csn 3623   {ctp 3625   <.cop 3626   ` cfv 5259   ndxcnx 12685   Basecbs 12688   +g cplusg 12765   .rcmulr 12766   Ringcrg 13562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-inn 8993  df-2 9051  df-3 9052  df-n0 9252  df-z 9329  df-uz 9604  df-fz 10086  df-struct 12690  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-plusg 12778  df-mulr 12779  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-grp 13145  df-mgp 13487  df-ring 13564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator