ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2eleq Unicode version

Theorem en2eleq 6742
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2eleq  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P  \  { X } ) } )

Proof of Theorem en2eleq
StepHypRef Expression
1 1onn 6212 . . . . . . 7  |-  1o  e.  om
2 simpr 108 . . . . . . . 8  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  2o )
3 df-2o 6117 . . . . . . . 8  |-  2o  =  suc  1o
42, 3syl6breq 3853 . . . . . . 7  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  suc  1o )
5 simpl 107 . . . . . . 7  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  e.  P )
6 dif1en 6528 . . . . . . 7  |-  ( ( 1o  e.  om  /\  P  ~~  suc  1o  /\  X  e.  P )  ->  ( P  \  { X } )  ~~  1o )
71, 4, 5, 6mp3an2i 1276 . . . . . 6  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { X } )  ~~  1o )
8 en1uniel 6454 . . . . . 6  |-  ( ( P  \  { X } )  ~~  1o  ->  U. ( P  \  { X } )  e.  ( P  \  { X } ) )
97, 8syl 14 . . . . 5  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  e.  ( P  \  { X } ) )
10 eldifsn 3544 . . . . 5  |-  ( U. ( P  \  { X } )  e.  ( P  \  { X } )  <->  ( U. ( P  \  { X } )  e.  P  /\  U. ( P  \  { X } )  =/= 
X ) )
119, 10sylib 120 . . . 4  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( U. ( P 
\  { X }
)  e.  P  /\  U. ( P  \  { X } )  =/=  X
) )
1211simprd 112 . . 3  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  =/=  X
)
1312necomd 2337 . 2  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  =/=  U. ( P 
\  { X }
) )
1411simpld 110 . . 3  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  e.  P
)
15 en2eqpr 6553 . . 3  |-  ( ( P  ~~  2o  /\  X  e.  P  /\  U. ( P  \  { X } )  e.  P
)  ->  ( X  =/=  U. ( P  \  { X } )  ->  P  =  { X ,  U. ( P  \  { X } ) } ) )
162, 5, 14, 15syl3anc 1172 . 2  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( X  =/=  U. ( P  \  { X } )  ->  P  =  { X ,  U. ( P  \  { X } ) } ) )
1713, 16mpd 13 1  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P  \  { X } ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1287    e. wcel 1436    =/= wne 2251    \ cdif 2983   {csn 3425   {cpr 3426   U.cuni 3630   class class class wbr 3814   suc csuc 4159   omcom 4371   1oc1o 6109   2oc2o 6110    ~~ cen 6388
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3922  ax-sep 3925  ax-nul 3933  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-iinf 4369
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-if 3377  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-iun 3709  df-br 3815  df-opab 3869  df-mpt 3870  df-tr 3905  df-id 4087  df-iord 4160  df-on 4162  df-suc 4165  df-iom 4372  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-f1 4977  df-fo 4978  df-f1o 4979  df-fv 4980  df-1o 6116  df-2o 6117  df-er 6225  df-en 6391  df-fin 6393
This theorem is referenced by:  en2other2  6743
  Copyright terms: Public domain W3C validator