ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2eleq Unicode version

Theorem en2eleq 7334
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2eleq  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P  \  { X } ) } )

Proof of Theorem en2eleq
StepHypRef Expression
1 1onn 6629 . . . . . . 7  |-  1o  e.  om
2 simpr 110 . . . . . . . 8  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  2o )
3 df-2o 6526 . . . . . . . 8  |-  2o  =  suc  1o
42, 3breqtrdi 4100 . . . . . . 7  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  suc  1o )
5 simpl 109 . . . . . . 7  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  e.  P )
6 dif1en 7002 . . . . . . 7  |-  ( ( 1o  e.  om  /\  P  ~~  suc  1o  /\  X  e.  P )  ->  ( P  \  { X } )  ~~  1o )
71, 4, 5, 6mp3an2i 1355 . . . . . 6  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { X } )  ~~  1o )
8 en1uniel 6919 . . . . . 6  |-  ( ( P  \  { X } )  ~~  1o  ->  U. ( P  \  { X } )  e.  ( P  \  { X } ) )
97, 8syl 14 . . . . 5  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  e.  ( P  \  { X } ) )
10 eldifsn 3771 . . . . 5  |-  ( U. ( P  \  { X } )  e.  ( P  \  { X } )  <->  ( U. ( P  \  { X } )  e.  P  /\  U. ( P  \  { X } )  =/= 
X ) )
119, 10sylib 122 . . . 4  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( U. ( P 
\  { X }
)  e.  P  /\  U. ( P  \  { X } )  =/=  X
) )
1211simprd 114 . . 3  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  =/=  X
)
1312necomd 2464 . 2  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  =/=  U. ( P 
\  { X }
) )
1411simpld 112 . . 3  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  e.  P
)
15 en2eqpr 7030 . . 3  |-  ( ( P  ~~  2o  /\  X  e.  P  /\  U. ( P  \  { X } )  e.  P
)  ->  ( X  =/=  U. ( P  \  { X } )  ->  P  =  { X ,  U. ( P  \  { X } ) } ) )
162, 5, 14, 15syl3anc 1250 . 2  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( X  =/=  U. ( P  \  { X } )  ->  P  =  { X ,  U. ( P  \  { X } ) } ) )
1713, 16mpd 13 1  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P  \  { X } ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    =/= wne 2378    \ cdif 3171   {csn 3643   {cpr 3644   U.cuni 3864   class class class wbr 4059   suc csuc 4430   omcom 4656   1oc1o 6518   2oc2o 6519    ~~ cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-fin 6853
This theorem is referenced by:  en2other2  7335
  Copyright terms: Public domain W3C validator