ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2eleq Unicode version

Theorem en2eleq 7172
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2eleq  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P  \  { X } ) } )

Proof of Theorem en2eleq
StepHypRef Expression
1 1onn 6499 . . . . . . 7  |-  1o  e.  om
2 simpr 109 . . . . . . . 8  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  2o )
3 df-2o 6396 . . . . . . . 8  |-  2o  =  suc  1o
42, 3breqtrdi 4030 . . . . . . 7  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  suc  1o )
5 simpl 108 . . . . . . 7  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  e.  P )
6 dif1en 6857 . . . . . . 7  |-  ( ( 1o  e.  om  /\  P  ~~  suc  1o  /\  X  e.  P )  ->  ( P  \  { X } )  ~~  1o )
71, 4, 5, 6mp3an2i 1337 . . . . . 6  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { X } )  ~~  1o )
8 en1uniel 6782 . . . . . 6  |-  ( ( P  \  { X } )  ~~  1o  ->  U. ( P  \  { X } )  e.  ( P  \  { X } ) )
97, 8syl 14 . . . . 5  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  e.  ( P  \  { X } ) )
10 eldifsn 3710 . . . . 5  |-  ( U. ( P  \  { X } )  e.  ( P  \  { X } )  <->  ( U. ( P  \  { X } )  e.  P  /\  U. ( P  \  { X } )  =/= 
X ) )
119, 10sylib 121 . . . 4  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( U. ( P 
\  { X }
)  e.  P  /\  U. ( P  \  { X } )  =/=  X
) )
1211simprd 113 . . 3  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  =/=  X
)
1312necomd 2426 . 2  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  =/=  U. ( P 
\  { X }
) )
1411simpld 111 . . 3  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  e.  P
)
15 en2eqpr 6885 . . 3  |-  ( ( P  ~~  2o  /\  X  e.  P  /\  U. ( P  \  { X } )  e.  P
)  ->  ( X  =/=  U. ( P  \  { X } )  ->  P  =  { X ,  U. ( P  \  { X } ) } ) )
162, 5, 14, 15syl3anc 1233 . 2  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( X  =/=  U. ( P  \  { X } )  ->  P  =  { X ,  U. ( P  \  { X } ) } ) )
1713, 16mpd 13 1  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P  \  { X } ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    =/= wne 2340    \ cdif 3118   {csn 3583   {cpr 3584   U.cuni 3796   class class class wbr 3989   suc csuc 4350   omcom 4574   1oc1o 6388   2oc2o 6389    ~~ cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  en2other2  7173
  Copyright terms: Public domain W3C validator