ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nnaddcl Unicode version

Theorem nn0nnaddcl 9274
Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.)
Assertion
Ref Expression
nn0nnaddcl  |-  ( ( M  e.  NN0  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )

Proof of Theorem nn0nnaddcl
StepHypRef Expression
1 nncn 8992 . . . 4  |-  ( N  e.  NN  ->  N  e.  CC )
2 nn0cn 9253 . . . 4  |-  ( M  e.  NN0  ->  M  e.  CC )
3 addcom 8158 . . . 4  |-  ( ( N  e.  CC  /\  M  e.  CC )  ->  ( N  +  M
)  =  ( M  +  N ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN0 )  -> 
( N  +  M
)  =  ( M  +  N ) )
5 nnnn0addcl 9273 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN0 )  -> 
( N  +  M
)  e.  NN )
64, 5eqeltrrd 2271 . 2  |-  ( ( N  e.  NN  /\  M  e.  NN0 )  -> 
( M  +  N
)  e.  NN )
76ancoms 268 1  |-  ( ( M  e.  NN0  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872    + caddc 7877   NNcn 8984   NN0cn0 9243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4148  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-inn 8985  df-n0 9244
This theorem is referenced by:  nn0p1nn  9282  nnaddm1cl  9381  numnncl  9460  modfzo0difsn  10469
  Copyright terms: Public domain W3C validator