| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0nnaddcl | Unicode version | ||
| Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.) |
| Ref | Expression |
|---|---|
| nn0nnaddcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn 9001 |
. . . 4
| |
| 2 | nn0cn 9262 |
. . . 4
| |
| 3 | addcom 8166 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2an 289 |
. . 3
|
| 5 | nnnn0addcl 9282 |
. . 3
| |
| 6 | 4, 5 | eqeltrrd 2274 |
. 2
|
| 7 | 6 | ancoms 268 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-addcom 7982 ax-addass 7984 ax-i2m1 7987 ax-0id 7990 ax-rnegex 7991 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-inn 8994 df-n0 9253 |
| This theorem is referenced by: nn0p1nn 9291 nnaddm1cl 9390 numnncl 9469 modfzo0difsn 10490 |
| Copyright terms: Public domain | W3C validator |