ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nnaddcl Unicode version

Theorem nn0nnaddcl 9328
Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.)
Assertion
Ref Expression
nn0nnaddcl  |-  ( ( M  e.  NN0  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )

Proof of Theorem nn0nnaddcl
StepHypRef Expression
1 nncn 9046 . . . 4  |-  ( N  e.  NN  ->  N  e.  CC )
2 nn0cn 9307 . . . 4  |-  ( M  e.  NN0  ->  M  e.  CC )
3 addcom 8211 . . . 4  |-  ( ( N  e.  CC  /\  M  e.  CC )  ->  ( N  +  M
)  =  ( M  +  N ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN0 )  -> 
( N  +  M
)  =  ( M  +  N ) )
5 nnnn0addcl 9327 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN0 )  -> 
( N  +  M
)  e.  NN )
64, 5eqeltrrd 2283 . 2  |-  ( ( N  e.  NN  /\  M  e.  NN0 )  -> 
( M  +  N
)  e.  NN )
76ancoms 268 1  |-  ( ( M  e.  NN0  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176  (class class class)co 5946   CCcc 7925    + caddc 7930   NNcn 9038   NN0cn0 9297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4163  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0id 8035  ax-rnegex 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949  df-inn 9039  df-n0 9298
This theorem is referenced by:  nn0p1nn  9336  nnaddm1cl  9436  numnncl  9515  modfzo0difsn  10542
  Copyright terms: Public domain W3C validator