ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nnaddcl Unicode version

Theorem nn0nnaddcl 8976
Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.)
Assertion
Ref Expression
nn0nnaddcl  |-  ( ( M  e.  NN0  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )

Proof of Theorem nn0nnaddcl
StepHypRef Expression
1 nncn 8696 . . . 4  |-  ( N  e.  NN  ->  N  e.  CC )
2 nn0cn 8955 . . . 4  |-  ( M  e.  NN0  ->  M  e.  CC )
3 addcom 7867 . . . 4  |-  ( ( N  e.  CC  /\  M  e.  CC )  ->  ( N  +  M
)  =  ( M  +  N ) )
41, 2, 3syl2an 287 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN0 )  -> 
( N  +  M
)  =  ( M  +  N ) )
5 nnnn0addcl 8975 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN0 )  -> 
( N  +  M
)  e.  NN )
64, 5eqeltrrd 2195 . 2  |-  ( ( N  e.  NN  /\  M  e.  NN0 )  -> 
( M  +  N
)  e.  NN )
76ancoms 266 1  |-  ( ( M  e.  NN0  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465  (class class class)co 5742   CCcc 7586    + caddc 7591   NNcn 8688   NN0cn0 8945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-i2m1 7693  ax-0id 7696  ax-rnegex 7697
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-rab 2402  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-iota 5058  df-fv 5101  df-ov 5745  df-inn 8689  df-n0 8946
This theorem is referenced by:  nn0p1nn  8984  nnaddm1cl  9083  numnncl  9159  modfzo0difsn  10136
  Copyright terms: Public domain W3C validator