ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaddm1cl Unicode version

Theorem nnaddm1cl 9508
Description: Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnaddm1cl  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  +  B )  -  1 )  e.  NN )

Proof of Theorem nnaddm1cl
StepHypRef Expression
1 nncn 9118 . . 3  |-  ( A  e.  NN  ->  A  e.  CC )
2 nncn 9118 . . 3  |-  ( B  e.  NN  ->  B  e.  CC )
3 ax-1cn 8092 . . . 4  |-  1  e.  CC
4 addsub 8357 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  1  e.  CC )  ->  (
( A  +  B
)  -  1 )  =  ( ( A  -  1 )  +  B ) )
53, 4mp3an3 1360 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  1 )  =  ( ( A  -  1 )  +  B ) )
61, 2, 5syl2an 289 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  +  B )  -  1 )  =  ( ( A  -  1 )  +  B ) )
7 nnm1nn0 9410 . . 3  |-  ( A  e.  NN  ->  ( A  -  1 )  e.  NN0 )
8 nn0nnaddcl 9400 . . 3  |-  ( ( ( A  -  1 )  e.  NN0  /\  B  e.  NN )  ->  ( ( A  - 
1 )  +  B
)  e.  NN )
97, 8sylan 283 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  - 
1 )  +  B
)  e.  NN )
106, 9eqeltrd 2306 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  +  B )  -  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997   1c1 8000    + caddc 8002    - cmin 8317   NNcn 9110   NN0cn0 9369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-inn 9111  df-n0 9370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator