ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0p1nn Unicode version

Theorem nn0p1nn 9217
Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0p1nn  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )

Proof of Theorem nn0p1nn
StepHypRef Expression
1 1nn 8932 . 2  |-  1  e.  NN
2 nn0nnaddcl 9209 . 2  |-  ( ( N  e.  NN0  /\  1  e.  NN )  ->  ( N  +  1 )  e.  NN )
31, 2mpan2 425 1  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148  (class class class)co 5877   1c1 7814    + caddc 7816   NNcn 8921   NN0cn0 9178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880  df-inn 8922  df-n0 9179
This theorem is referenced by:  elnn0nn  9220  elz2  9326  peano5uzti  9363  fseq1p1m1  10096  fzonn0p1  10213  nn0ennn  10435  faccl  10717  facdiv  10720  facwordi  10722  faclbnd  10723  facubnd  10727  bcm1k  10742  bcp1n  10743  bcp1nk  10744  bcpasc  10748  bcxmas  11499  efcllemp  11668  uzwodc  12040  prmfac1  12154  pcfac  12350
  Copyright terms: Public domain W3C validator