ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0p1nn Unicode version

Theorem nn0p1nn 9408
Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0p1nn  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )

Proof of Theorem nn0p1nn
StepHypRef Expression
1 1nn 9121 . 2  |-  1  e.  NN
2 nn0nnaddcl 9400 . 2  |-  ( ( N  e.  NN0  /\  1  e.  NN )  ->  ( N  +  1 )  e.  NN )
31, 2mpan2 425 1  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200  (class class class)co 6001   1c1 8000    + caddc 8002   NNcn 9110   NN0cn0 9369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-inn 9111  df-n0 9370
This theorem is referenced by:  elnn0nn  9411  elz2  9518  peano5uzti  9555  fseq1p1m1  10290  fzonn0p1  10417  nn0ennn  10655  faccl  10957  facdiv  10960  facwordi  10962  faclbnd  10963  facubnd  10967  bcm1k  10982  bcp1n  10983  bcp1nk  10984  bcpasc  10988  ccats1pfxeqrex  11247  wrdind  11254  wrd2ind  11255  ccats1pfxeqbi  11274  bcxmas  12000  efcllemp  12169  uzwodc  12558  prmfac1  12674  pcfac  12873  4sqlem12  12925  gsumfzconst  13878  plycolemc  15432  gausslemma2dlem3  15742  2lgslem1a  15767
  Copyright terms: Public domain W3C validator