| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0p1nn | Unicode version | ||
| Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0p1nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9121 |
. 2
| |
| 2 | nn0nnaddcl 9400 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: elnn0nn 9411 elz2 9518 peano5uzti 9555 fseq1p1m1 10290 fzonn0p1 10417 nn0ennn 10655 faccl 10957 facdiv 10960 facwordi 10962 faclbnd 10963 facubnd 10967 bcm1k 10982 bcp1n 10983 bcp1nk 10984 bcpasc 10988 ccats1pfxeqrex 11247 wrdind 11254 wrd2ind 11255 ccats1pfxeqbi 11274 bcxmas 12000 efcllemp 12169 uzwodc 12558 prmfac1 12674 pcfac 12873 4sqlem12 12925 gsumfzconst 13878 plycolemc 15432 gausslemma2dlem3 15742 2lgslem1a 15767 |
| Copyright terms: Public domain | W3C validator |