| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0p1nn | Unicode version | ||
| Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0p1nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9082 |
. 2
| |
| 2 | nn0nnaddcl 9361 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-n0 9331 |
| This theorem is referenced by: elnn0nn 9372 elz2 9479 peano5uzti 9516 fseq1p1m1 10251 fzonn0p1 10377 nn0ennn 10615 faccl 10917 facdiv 10920 facwordi 10922 faclbnd 10923 facubnd 10927 bcm1k 10942 bcp1n 10943 bcp1nk 10944 bcpasc 10948 ccats1pfxeqrex 11206 wrdind 11213 wrd2ind 11214 ccats1pfxeqbi 11233 bcxmas 11915 efcllemp 12084 uzwodc 12473 prmfac1 12589 pcfac 12788 4sqlem12 12840 gsumfzconst 13792 plycolemc 15345 gausslemma2dlem3 15655 2lgslem1a 15680 |
| Copyright terms: Public domain | W3C validator |