ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0p1nn Unicode version

Theorem nn0p1nn 9229
Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0p1nn  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )

Proof of Theorem nn0p1nn
StepHypRef Expression
1 1nn 8944 . 2  |-  1  e.  NN
2 nn0nnaddcl 9221 . 2  |-  ( ( N  e.  NN0  /\  1  e.  NN )  ->  ( N  +  1 )  e.  NN )
31, 2mpan2 425 1  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2158  (class class class)co 5888   1c1 7826    + caddc 7828   NNcn 8933   NN0cn0 9190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-sep 4133  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0id 7933  ax-rnegex 7934
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-iota 5190  df-fv 5236  df-ov 5891  df-inn 8934  df-n0 9191
This theorem is referenced by:  elnn0nn  9232  elz2  9338  peano5uzti  9375  fseq1p1m1  10108  fzonn0p1  10225  nn0ennn  10447  faccl  10729  facdiv  10732  facwordi  10734  faclbnd  10735  facubnd  10739  bcm1k  10754  bcp1n  10755  bcp1nk  10756  bcpasc  10760  bcxmas  11511  efcllemp  11680  uzwodc  12052  prmfac1  12166  pcfac  12362
  Copyright terms: Public domain W3C validator