| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0p1nn | Unicode version | ||
| Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0p1nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9018 |
. 2
| |
| 2 | nn0nnaddcl 9297 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 df-n0 9267 |
| This theorem is referenced by: elnn0nn 9308 elz2 9414 peano5uzti 9451 fseq1p1m1 10186 fzonn0p1 10304 nn0ennn 10542 faccl 10844 facdiv 10847 facwordi 10849 faclbnd 10850 facubnd 10854 bcm1k 10869 bcp1n 10870 bcp1nk 10871 bcpasc 10875 bcxmas 11671 efcllemp 11840 uzwodc 12229 prmfac1 12345 pcfac 12544 4sqlem12 12596 gsumfzconst 13547 plycolemc 15078 gausslemma2dlem3 15388 2lgslem1a 15413 |
| Copyright terms: Public domain | W3C validator |