| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nn0p1nn | Unicode version | ||
| Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) | 
| Ref | Expression | 
|---|---|
| nn0p1nn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1nn 9001 | 
. 2
 | |
| 2 | nn0nnaddcl 9280 | 
. 2
 | |
| 3 | 1, 2 | mpan2 425 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-n0 9250 | 
| This theorem is referenced by: elnn0nn 9291 elz2 9397 peano5uzti 9434 fseq1p1m1 10169 fzonn0p1 10287 nn0ennn 10525 faccl 10827 facdiv 10830 facwordi 10832 faclbnd 10833 facubnd 10837 bcm1k 10852 bcp1n 10853 bcp1nk 10854 bcpasc 10858 bcxmas 11654 efcllemp 11823 uzwodc 12204 prmfac1 12320 pcfac 12519 4sqlem12 12571 gsumfzconst 13471 plycolemc 14994 gausslemma2dlem3 15304 2lgslem1a 15329 | 
| Copyright terms: Public domain | W3C validator |