ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0addcl Unicode version

Theorem nnnn0addcl 9140
Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnnn0addcl  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN )

Proof of Theorem nnnn0addcl
StepHypRef Expression
1 elnn0 9112 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnaddcl 8873 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
3 oveq2 5849 . . . . 5  |-  ( N  =  0  ->  ( M  +  N )  =  ( M  + 
0 ) )
4 nncn 8861 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  CC )
54addid1d 8043 . . . . 5  |-  ( M  e.  NN  ->  ( M  +  0 )  =  M )
63, 5sylan9eqr 2220 . . . 4  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  ( M  +  N )  =  M )
7 simpl 108 . . . 4  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  M  e.  NN )
86, 7eqeltrd 2242 . . 3  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  ( M  +  N )  e.  NN )
92, 8jaodan 787 . 2  |-  ( ( M  e.  NN  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( M  +  N )  e.  NN )
101, 9sylan2b 285 1  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136  (class class class)co 5841   0cc0 7749    + caddc 7752   NNcn 8853   NN0cn0 9110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4099  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addass 7851  ax-i2m1 7854  ax-0id 7857
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-rab 2452  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-br 3982  df-iota 5152  df-fv 5195  df-ov 5844  df-inn 8854  df-n0 9111
This theorem is referenced by:  nn0nnaddcl  9141  elz2  9258  bcxmas  11426
  Copyright terms: Public domain W3C validator