ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0addcl Unicode version

Theorem nnnn0addcl 9281
Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnnn0addcl  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN )

Proof of Theorem nnnn0addcl
StepHypRef Expression
1 elnn0 9253 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnaddcl 9012 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
3 oveq2 5931 . . . . 5  |-  ( N  =  0  ->  ( M  +  N )  =  ( M  + 
0 ) )
4 nncn 9000 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  CC )
54addridd 8177 . . . . 5  |-  ( M  e.  NN  ->  ( M  +  0 )  =  M )
63, 5sylan9eqr 2251 . . . 4  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  ( M  +  N )  =  M )
7 simpl 109 . . . 4  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  M  e.  NN )
86, 7eqeltrd 2273 . . 3  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  ( M  +  N )  e.  NN )
92, 8jaodan 798 . 2  |-  ( ( M  e.  NN  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( M  +  N )  e.  NN )
101, 9sylan2b 287 1  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167  (class class class)co 5923   0cc0 7881    + caddc 7884   NNcn 8992   NN0cn0 9251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addass 7983  ax-i2m1 7986  ax-0id 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5926  df-inn 8993  df-n0 9252
This theorem is referenced by:  nn0nnaddcl  9282  elz2  9399  bcxmas  11656  dec2nprm  12594
  Copyright terms: Public domain W3C validator