Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnn0addcl | Unicode version |
Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nnnn0addcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9112 | . 2 | |
2 | nnaddcl 8873 | . . 3 | |
3 | oveq2 5849 | . . . . 5 | |
4 | nncn 8861 | . . . . . 6 | |
5 | 4 | addid1d 8043 | . . . . 5 |
6 | 3, 5 | sylan9eqr 2220 | . . . 4 |
7 | simpl 108 | . . . 4 | |
8 | 6, 7 | eqeltrd 2242 | . . 3 |
9 | 2, 8 | jaodan 787 | . 2 |
10 | 1, 9 | sylan2b 285 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 (class class class)co 5841 cc0 7749 caddc 7752 cn 8853 cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addass 7851 ax-i2m1 7854 ax-0id 7857 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-inn 8854 df-n0 9111 |
This theorem is referenced by: nn0nnaddcl 9141 elz2 9258 bcxmas 11426 |
Copyright terms: Public domain | W3C validator |