| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0addcl | Unicode version | ||
| Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnnn0addcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9253 |
. 2
| |
| 2 | nnaddcl 9012 |
. . 3
| |
| 3 | oveq2 5931 |
. . . . 5
| |
| 4 | nncn 9000 |
. . . . . 6
| |
| 5 | 4 | addridd 8177 |
. . . . 5
|
| 6 | 3, 5 | sylan9eqr 2251 |
. . . 4
|
| 7 | simpl 109 |
. . . 4
| |
| 8 | 6, 7 | eqeltrd 2273 |
. . 3
|
| 9 | 2, 8 | jaodan 798 |
. 2
|
| 10 | 1, 9 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addass 7983 ax-i2m1 7986 ax-0id 7989 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-inn 8993 df-n0 9252 |
| This theorem is referenced by: nn0nnaddcl 9282 elz2 9399 bcxmas 11656 dec2nprm 12594 |
| Copyright terms: Public domain | W3C validator |