ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0addcl Unicode version

Theorem nnnn0addcl 9273
Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnnn0addcl  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN )

Proof of Theorem nnnn0addcl
StepHypRef Expression
1 elnn0 9245 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnaddcl 9004 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
3 oveq2 5927 . . . . 5  |-  ( N  =  0  ->  ( M  +  N )  =  ( M  + 
0 ) )
4 nncn 8992 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  CC )
54addridd 8170 . . . . 5  |-  ( M  e.  NN  ->  ( M  +  0 )  =  M )
63, 5sylan9eqr 2248 . . . 4  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  ( M  +  N )  =  M )
7 simpl 109 . . . 4  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  M  e.  NN )
86, 7eqeltrd 2270 . . 3  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  ( M  +  N )  e.  NN )
92, 8jaodan 798 . 2  |-  ( ( M  e.  NN  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( M  +  N )  e.  NN )
101, 9sylan2b 287 1  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164  (class class class)co 5919   0cc0 7874    + caddc 7877   NNcn 8984   NN0cn0 9243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4148  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addass 7976  ax-i2m1 7979  ax-0id 7982
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-inn 8985  df-n0 9244
This theorem is referenced by:  nn0nnaddcl  9274  elz2  9391  bcxmas  11635
  Copyright terms: Public domain W3C validator