![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0nnaddcl | GIF version |
Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.) |
Ref | Expression |
---|---|
nn0nnaddcl | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn 8990 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
2 | nn0cn 9250 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
3 | addcom 8156 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + 𝑀) = (𝑀 + 𝑁)) | |
4 | 1, 2, 3 | syl2an 289 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 + 𝑀) = (𝑀 + 𝑁)) |
5 | nnnn0addcl 9270 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ) | |
6 | 4, 5 | eqeltrrd 2271 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ) |
7 | 6 | ancoms 268 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 ℕcn 8982 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-n0 9241 |
This theorem is referenced by: nn0p1nn 9279 nnaddm1cl 9378 numnncl 9457 modfzo0difsn 10466 |
Copyright terms: Public domain | W3C validator |