Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0nnaddcl | GIF version |
Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.) |
Ref | Expression |
---|---|
nn0nnaddcl | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn 8879 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
2 | nn0cn 9138 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
3 | addcom 8049 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + 𝑀) = (𝑀 + 𝑁)) | |
4 | 1, 2, 3 | syl2an 287 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 + 𝑀) = (𝑀 + 𝑁)) |
5 | nnnn0addcl 9158 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ) | |
6 | 4, 5 | eqeltrrd 2248 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ) |
7 | 6 | ancoms 266 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 (class class class)co 5851 ℂcc 7765 + caddc 7770 ℕcn 8871 ℕ0cn0 9128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-addass 7869 ax-i2m1 7872 ax-0id 7875 ax-rnegex 7876 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5854 df-inn 8872 df-n0 9129 |
This theorem is referenced by: nn0p1nn 9167 nnaddm1cl 9266 numnncl 9345 modfzo0difsn 10344 |
Copyright terms: Public domain | W3C validator |