ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nnaddcl GIF version

Theorem nn0nnaddcl 9396
Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.)
Assertion
Ref Expression
nn0nnaddcl ((𝑀 ∈ ℕ0𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)

Proof of Theorem nn0nnaddcl
StepHypRef Expression
1 nncn 9114 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2 nn0cn 9375 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
3 addcom 8279 . . . 4 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + 𝑀) = (𝑀 + 𝑁))
41, 2, 3syl2an 289 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 + 𝑀) = (𝑀 + 𝑁))
5 nnnn0addcl 9395 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ)
64, 5eqeltrrd 2307 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ)
76ancoms 268 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  (class class class)co 6000  cc 7993   + caddc 7998  cn 9106  0cn0 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-inn 9107  df-n0 9366
This theorem is referenced by:  nn0p1nn  9404  nnaddm1cl  9504  numnncl  9583  modfzo0difsn  10612
  Copyright terms: Public domain W3C validator