| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnge1 | Unicode version | ||
| Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnge1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4048 |
. 2
| |
| 2 | breq2 4048 |
. 2
| |
| 3 | breq2 4048 |
. 2
| |
| 4 | breq2 4048 |
. 2
| |
| 5 | 1le1 8645 |
. 2
| |
| 6 | nnre 9043 |
. . 3
| |
| 7 | recn 8058 |
. . . . . 6
| |
| 8 | 7 | addridd 8221 |
. . . . 5
|
| 9 | 8 | breq2d 4056 |
. . . 4
|
| 10 | 0lt1 8199 |
. . . . . . . 8
| |
| 11 | 0re 8072 |
. . . . . . . . 9
| |
| 12 | 1re 8071 |
. . . . . . . . 9
| |
| 13 | axltadd 8142 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | mp3an12 1340 |
. . . . . . . 8
|
| 15 | 10, 14 | mpi 15 |
. . . . . . 7
|
| 16 | readdcl 8051 |
. . . . . . . . 9
| |
| 17 | 11, 16 | mpan2 425 |
. . . . . . . 8
|
| 18 | peano2re 8208 |
. . . . . . . 8
| |
| 19 | lttr 8146 |
. . . . . . . . 9
| |
| 20 | 12, 19 | mp3an3 1339 |
. . . . . . . 8
|
| 21 | 17, 18, 20 | syl2anc 411 |
. . . . . . 7
|
| 22 | 15, 21 | mpand 429 |
. . . . . 6
|
| 23 | 22 | con3d 632 |
. . . . 5
|
| 24 | lenlt 8148 |
. . . . . 6
| |
| 25 | 12, 17, 24 | sylancr 414 |
. . . . 5
|
| 26 | lenlt 8148 |
. . . . . 6
| |
| 27 | 12, 18, 26 | sylancr 414 |
. . . . 5
|
| 28 | 23, 25, 27 | 3imtr4d 203 |
. . . 4
|
| 29 | 9, 28 | sylbird 170 |
. . 3
|
| 30 | 6, 29 | syl 14 |
. 2
|
| 31 | 1, 2, 3, 4, 5, 30 | nnind 9052 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-inn 9037 |
| This theorem is referenced by: nnle1eq1 9060 nngt0 9061 nnnlt1 9062 nnrecgt0 9074 nnge1d 9079 elnnnn0c 9340 elnnz1 9395 zltp1le 9427 nn0ledivnn 9889 elfz1b 10212 fzo1fzo0n0 10307 elfzom1elp1fzo 10331 fzo0sn0fzo1 10350 nnlesq 10788 faclbnd 10886 faclbnd3 10888 len0nnbi 11028 fstwrdne0 11033 cvgratz 11843 coprmgcdb 12410 isprm3 12440 pw2dvds 12488 pockthg 12680 oddennn 12763 gausslemma2dlem1a 15535 |
| Copyright terms: Public domain | W3C validator |