| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnge1 | Unicode version | ||
| Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnge1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4049 |
. 2
| |
| 2 | breq2 4049 |
. 2
| |
| 3 | breq2 4049 |
. 2
| |
| 4 | breq2 4049 |
. 2
| |
| 5 | 1le1 8647 |
. 2
| |
| 6 | nnre 9045 |
. . 3
| |
| 7 | recn 8060 |
. . . . . 6
| |
| 8 | 7 | addridd 8223 |
. . . . 5
|
| 9 | 8 | breq2d 4057 |
. . . 4
|
| 10 | 0lt1 8201 |
. . . . . . . 8
| |
| 11 | 0re 8074 |
. . . . . . . . 9
| |
| 12 | 1re 8073 |
. . . . . . . . 9
| |
| 13 | axltadd 8144 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | mp3an12 1340 |
. . . . . . . 8
|
| 15 | 10, 14 | mpi 15 |
. . . . . . 7
|
| 16 | readdcl 8053 |
. . . . . . . . 9
| |
| 17 | 11, 16 | mpan2 425 |
. . . . . . . 8
|
| 18 | peano2re 8210 |
. . . . . . . 8
| |
| 19 | lttr 8148 |
. . . . . . . . 9
| |
| 20 | 12, 19 | mp3an3 1339 |
. . . . . . . 8
|
| 21 | 17, 18, 20 | syl2anc 411 |
. . . . . . 7
|
| 22 | 15, 21 | mpand 429 |
. . . . . 6
|
| 23 | 22 | con3d 632 |
. . . . 5
|
| 24 | lenlt 8150 |
. . . . . 6
| |
| 25 | 12, 17, 24 | sylancr 414 |
. . . . 5
|
| 26 | lenlt 8150 |
. . . . . 6
| |
| 27 | 12, 18, 26 | sylancr 414 |
. . . . 5
|
| 28 | 23, 25, 27 | 3imtr4d 203 |
. . . 4
|
| 29 | 9, 28 | sylbird 170 |
. . 3
|
| 30 | 6, 29 | syl 14 |
. 2
|
| 31 | 1, 2, 3, 4, 5, 30 | nnind 9054 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltirr 8039 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-iota 5233 df-fv 5280 df-ov 5949 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-inn 9039 |
| This theorem is referenced by: nnle1eq1 9062 nngt0 9063 nnnlt1 9064 nnrecgt0 9076 nnge1d 9081 elnnnn0c 9342 elnnz1 9397 zltp1le 9429 nn0ledivnn 9891 elfz1b 10214 fzo1fzo0n0 10309 elfzom1elp1fzo 10333 fzo0sn0fzo1 10352 nnlesq 10790 faclbnd 10888 faclbnd3 10890 len0nnbi 11030 fstwrdne0 11035 cvgratz 11876 coprmgcdb 12443 isprm3 12473 pw2dvds 12521 pockthg 12713 oddennn 12796 gausslemma2dlem1a 15568 |
| Copyright terms: Public domain | W3C validator |