ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnge1 Unicode version

Theorem nnge1 8443
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
nnge1  |-  ( A  e.  NN  ->  1  <_  A )

Proof of Theorem nnge1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3849 . 2  |-  ( x  =  1  ->  (
1  <_  x  <->  1  <_  1 ) )
2 breq2 3849 . 2  |-  ( x  =  y  ->  (
1  <_  x  <->  1  <_  y ) )
3 breq2 3849 . 2  |-  ( x  =  ( y  +  1 )  ->  (
1  <_  x  <->  1  <_  ( y  +  1 ) ) )
4 breq2 3849 . 2  |-  ( x  =  A  ->  (
1  <_  x  <->  1  <_  A ) )
5 1le1 8047 . 2  |-  1  <_  1
6 nnre 8427 . . 3  |-  ( y  e.  NN  ->  y  e.  RR )
7 recn 7473 . . . . . 6  |-  ( y  e.  RR  ->  y  e.  CC )
87addid1d 7629 . . . . 5  |-  ( y  e.  RR  ->  (
y  +  0 )  =  y )
98breq2d 3857 . . . 4  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  <->  1  <_  y ) )
10 0lt1 7608 . . . . . . . 8  |-  0  <  1
11 0re 7486 . . . . . . . . 9  |-  0  e.  RR
12 1re 7485 . . . . . . . . 9  |-  1  e.  RR
13 axltadd 7554 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  y  e.  RR )  ->  (
0  <  1  ->  ( y  +  0 )  <  ( y  +  1 ) ) )
1411, 12, 13mp3an12 1263 . . . . . . . 8  |-  ( y  e.  RR  ->  (
0  <  1  ->  ( y  +  0 )  <  ( y  +  1 ) ) )
1510, 14mpi 15 . . . . . . 7  |-  ( y  e.  RR  ->  (
y  +  0 )  <  ( y  +  1 ) )
16 readdcl 7466 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  0  e.  RR )  ->  ( y  +  0 )  e.  RR )
1711, 16mpan2 416 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  0 )  e.  RR )
18 peano2re 7616 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
19 lttr 7557 . . . . . . . . 9  |-  ( ( ( y  +  0 )  e.  RR  /\  ( y  +  1 )  e.  RR  /\  1  e.  RR )  ->  ( ( ( y  +  0 )  < 
( y  +  1 )  /\  ( y  +  1 )  <  1 )  ->  (
y  +  0 )  <  1 ) )
2012, 19mp3an3 1262 . . . . . . . 8  |-  ( ( ( y  +  0 )  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( ( ( y  +  0 )  <  ( y  +  1 )  /\  (
y  +  1 )  <  1 )  -> 
( y  +  0 )  <  1 ) )
2117, 18, 20syl2anc 403 . . . . . . 7  |-  ( y  e.  RR  ->  (
( ( y  +  0 )  <  (
y  +  1 )  /\  ( y  +  1 )  <  1
)  ->  ( y  +  0 )  <  1 ) )
2215, 21mpand 420 . . . . . 6  |-  ( y  e.  RR  ->  (
( y  +  1 )  <  1  -> 
( y  +  0 )  <  1 ) )
2322con3d 596 . . . . 5  |-  ( y  e.  RR  ->  ( -.  ( y  +  0 )  <  1  ->  -.  ( y  +  1 )  <  1 ) )
24 lenlt 7559 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( y  +  0 )  e.  RR )  ->  ( 1  <_ 
( y  +  0 )  <->  -.  ( y  +  0 )  <  1 ) )
2512, 17, 24sylancr 405 . . . . 5  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  <->  -.  (
y  +  0 )  <  1 ) )
26 lenlt 7559 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( 1  <_ 
( y  +  1 )  <->  -.  ( y  +  1 )  <  1 ) )
2712, 18, 26sylancr 405 . . . . 5  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  1 )  <->  -.  (
y  +  1 )  <  1 ) )
2823, 25, 273imtr4d 201 . . . 4  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  -> 
1  <_  ( y  +  1 ) ) )
299, 28sylbird 168 . . 3  |-  ( y  e.  RR  ->  (
1  <_  y  ->  1  <_  ( y  +  1 ) ) )
306, 29syl 14 . 2  |-  ( y  e.  NN  ->  (
1  <_  y  ->  1  <_  ( y  +  1 ) ) )
311, 2, 3, 4, 5, 30nnind 8436 1  |-  ( A  e.  NN  ->  1  <_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1438   class class class wbr 3845  (class class class)co 5652   RRcr 7347   0cc0 7348   1c1 7349    + caddc 7351    < clt 7520    <_ cle 7521   NNcn 8420
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1re 7437  ax-addrcl 7440  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-pre-ltirr 7455  ax-pre-lttrn 7457  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-xp 4444  df-cnv 4446  df-iota 4980  df-fv 5023  df-ov 5655  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-inn 8421
This theorem is referenced by:  nnle1eq1  8444  nngt0  8445  nnnlt1  8446  nnrecgt0  8458  nnge1d  8463  elnnnn0c  8716  elnnz1  8771  zltp1le  8802  nn0ledivnn  9236  elfz1b  9500  fzo1fzo0n0  9590  elfzom1elp1fzo  9609  fzo0sn0fzo1  9628  nnlesq  10054  faclbnd  10145  faclbnd3  10147  cvgratz  10922  coprmgcdb  11344  isprm3  11374  pw2dvds  11418  oddennn  11479
  Copyright terms: Public domain W3C validator