| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnge1 | Unicode version | ||
| Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnge1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4087 |
. 2
| |
| 2 | breq2 4087 |
. 2
| |
| 3 | breq2 4087 |
. 2
| |
| 4 | breq2 4087 |
. 2
| |
| 5 | 1le1 8719 |
. 2
| |
| 6 | nnre 9117 |
. . 3
| |
| 7 | recn 8132 |
. . . . . 6
| |
| 8 | 7 | addridd 8295 |
. . . . 5
|
| 9 | 8 | breq2d 4095 |
. . . 4
|
| 10 | 0lt1 8273 |
. . . . . . . 8
| |
| 11 | 0re 8146 |
. . . . . . . . 9
| |
| 12 | 1re 8145 |
. . . . . . . . 9
| |
| 13 | axltadd 8216 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | mp3an12 1361 |
. . . . . . . 8
|
| 15 | 10, 14 | mpi 15 |
. . . . . . 7
|
| 16 | readdcl 8125 |
. . . . . . . . 9
| |
| 17 | 11, 16 | mpan2 425 |
. . . . . . . 8
|
| 18 | peano2re 8282 |
. . . . . . . 8
| |
| 19 | lttr 8220 |
. . . . . . . . 9
| |
| 20 | 12, 19 | mp3an3 1360 |
. . . . . . . 8
|
| 21 | 17, 18, 20 | syl2anc 411 |
. . . . . . 7
|
| 22 | 15, 21 | mpand 429 |
. . . . . 6
|
| 23 | 22 | con3d 634 |
. . . . 5
|
| 24 | lenlt 8222 |
. . . . . 6
| |
| 25 | 12, 17, 24 | sylancr 414 |
. . . . 5
|
| 26 | lenlt 8222 |
. . . . . 6
| |
| 27 | 12, 18, 26 | sylancr 414 |
. . . . 5
|
| 28 | 23, 25, 27 | 3imtr4d 203 |
. . . 4
|
| 29 | 9, 28 | sylbird 170 |
. . 3
|
| 30 | 6, 29 | syl 14 |
. 2
|
| 31 | 1, 2, 3, 4, 5, 30 | nnind 9126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-iota 5278 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-inn 9111 |
| This theorem is referenced by: nnle1eq1 9134 nngt0 9135 nnnlt1 9136 nnrecgt0 9148 nnge1d 9153 elnnnn0c 9414 elnnz1 9469 zltp1le 9501 nn0ledivnn 9963 elfz1b 10286 fzo1fzo0n0 10383 elfzom1elp1fzo 10408 fzo0sn0fzo1 10427 nnlesq 10865 faclbnd 10963 faclbnd3 10965 len0nnbi 11106 fstwrdne0 11111 cvgratz 12043 coprmgcdb 12610 isprm3 12640 pw2dvds 12688 pockthg 12880 oddennn 12963 gausslemma2dlem1a 15737 |
| Copyright terms: Public domain | W3C validator |