ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnge1 Unicode version

Theorem nnge1 9013
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
nnge1  |-  ( A  e.  NN  ->  1  <_  A )

Proof of Theorem nnge1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4037 . 2  |-  ( x  =  1  ->  (
1  <_  x  <->  1  <_  1 ) )
2 breq2 4037 . 2  |-  ( x  =  y  ->  (
1  <_  x  <->  1  <_  y ) )
3 breq2 4037 . 2  |-  ( x  =  ( y  +  1 )  ->  (
1  <_  x  <->  1  <_  ( y  +  1 ) ) )
4 breq2 4037 . 2  |-  ( x  =  A  ->  (
1  <_  x  <->  1  <_  A ) )
5 1le1 8599 . 2  |-  1  <_  1
6 nnre 8997 . . 3  |-  ( y  e.  NN  ->  y  e.  RR )
7 recn 8012 . . . . . 6  |-  ( y  e.  RR  ->  y  e.  CC )
87addridd 8175 . . . . 5  |-  ( y  e.  RR  ->  (
y  +  0 )  =  y )
98breq2d 4045 . . . 4  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  <->  1  <_  y ) )
10 0lt1 8153 . . . . . . . 8  |-  0  <  1
11 0re 8026 . . . . . . . . 9  |-  0  e.  RR
12 1re 8025 . . . . . . . . 9  |-  1  e.  RR
13 axltadd 8096 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  y  e.  RR )  ->  (
0  <  1  ->  ( y  +  0 )  <  ( y  +  1 ) ) )
1411, 12, 13mp3an12 1338 . . . . . . . 8  |-  ( y  e.  RR  ->  (
0  <  1  ->  ( y  +  0 )  <  ( y  +  1 ) ) )
1510, 14mpi 15 . . . . . . 7  |-  ( y  e.  RR  ->  (
y  +  0 )  <  ( y  +  1 ) )
16 readdcl 8005 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  0  e.  RR )  ->  ( y  +  0 )  e.  RR )
1711, 16mpan2 425 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  0 )  e.  RR )
18 peano2re 8162 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
19 lttr 8100 . . . . . . . . 9  |-  ( ( ( y  +  0 )  e.  RR  /\  ( y  +  1 )  e.  RR  /\  1  e.  RR )  ->  ( ( ( y  +  0 )  < 
( y  +  1 )  /\  ( y  +  1 )  <  1 )  ->  (
y  +  0 )  <  1 ) )
2012, 19mp3an3 1337 . . . . . . . 8  |-  ( ( ( y  +  0 )  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( ( ( y  +  0 )  <  ( y  +  1 )  /\  (
y  +  1 )  <  1 )  -> 
( y  +  0 )  <  1 ) )
2117, 18, 20syl2anc 411 . . . . . . 7  |-  ( y  e.  RR  ->  (
( ( y  +  0 )  <  (
y  +  1 )  /\  ( y  +  1 )  <  1
)  ->  ( y  +  0 )  <  1 ) )
2215, 21mpand 429 . . . . . 6  |-  ( y  e.  RR  ->  (
( y  +  1 )  <  1  -> 
( y  +  0 )  <  1 ) )
2322con3d 632 . . . . 5  |-  ( y  e.  RR  ->  ( -.  ( y  +  0 )  <  1  ->  -.  ( y  +  1 )  <  1 ) )
24 lenlt 8102 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( y  +  0 )  e.  RR )  ->  ( 1  <_ 
( y  +  0 )  <->  -.  ( y  +  0 )  <  1 ) )
2512, 17, 24sylancr 414 . . . . 5  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  <->  -.  (
y  +  0 )  <  1 ) )
26 lenlt 8102 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( 1  <_ 
( y  +  1 )  <->  -.  ( y  +  1 )  <  1 ) )
2712, 18, 26sylancr 414 . . . . 5  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  1 )  <->  -.  (
y  +  1 )  <  1 ) )
2823, 25, 273imtr4d 203 . . . 4  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  -> 
1  <_  ( y  +  1 ) ) )
299, 28sylbird 170 . . 3  |-  ( y  e.  RR  ->  (
1  <_  y  ->  1  <_  ( y  +  1 ) ) )
306, 29syl 14 . 2  |-  ( y  e.  NN  ->  (
1  <_  y  ->  1  <_  ( y  +  1 ) ) )
311, 2, 3, 4, 5, 30nnind 9006 1  |-  ( A  e.  NN  ->  1  <_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    < clt 8061    <_ cle 8062   NNcn 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-iota 5219  df-fv 5266  df-ov 5925  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-inn 8991
This theorem is referenced by:  nnle1eq1  9014  nngt0  9015  nnnlt1  9016  nnrecgt0  9028  nnge1d  9033  elnnnn0c  9294  elnnz1  9349  zltp1le  9380  nn0ledivnn  9842  elfz1b  10165  fzo1fzo0n0  10259  elfzom1elp1fzo  10278  fzo0sn0fzo1  10297  nnlesq  10735  faclbnd  10833  faclbnd3  10835  len0nnbi  10969  fstwrdne0  10974  cvgratz  11697  coprmgcdb  12256  isprm3  12286  pw2dvds  12334  pockthg  12526  oddennn  12609  gausslemma2dlem1a  15299
  Copyright terms: Public domain W3C validator