| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnge1 | Unicode version | ||
| Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnge1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4037 |
. 2
| |
| 2 | breq2 4037 |
. 2
| |
| 3 | breq2 4037 |
. 2
| |
| 4 | breq2 4037 |
. 2
| |
| 5 | 1le1 8599 |
. 2
| |
| 6 | nnre 8997 |
. . 3
| |
| 7 | recn 8012 |
. . . . . 6
| |
| 8 | 7 | addridd 8175 |
. . . . 5
|
| 9 | 8 | breq2d 4045 |
. . . 4
|
| 10 | 0lt1 8153 |
. . . . . . . 8
| |
| 11 | 0re 8026 |
. . . . . . . . 9
| |
| 12 | 1re 8025 |
. . . . . . . . 9
| |
| 13 | axltadd 8096 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | mp3an12 1338 |
. . . . . . . 8
|
| 15 | 10, 14 | mpi 15 |
. . . . . . 7
|
| 16 | readdcl 8005 |
. . . . . . . . 9
| |
| 17 | 11, 16 | mpan2 425 |
. . . . . . . 8
|
| 18 | peano2re 8162 |
. . . . . . . 8
| |
| 19 | lttr 8100 |
. . . . . . . . 9
| |
| 20 | 12, 19 | mp3an3 1337 |
. . . . . . . 8
|
| 21 | 17, 18, 20 | syl2anc 411 |
. . . . . . 7
|
| 22 | 15, 21 | mpand 429 |
. . . . . 6
|
| 23 | 22 | con3d 632 |
. . . . 5
|
| 24 | lenlt 8102 |
. . . . . 6
| |
| 25 | 12, 17, 24 | sylancr 414 |
. . . . 5
|
| 26 | lenlt 8102 |
. . . . . 6
| |
| 27 | 12, 18, 26 | sylancr 414 |
. . . . 5
|
| 28 | 23, 25, 27 | 3imtr4d 203 |
. . . 4
|
| 29 | 9, 28 | sylbird 170 |
. . 3
|
| 30 | 6, 29 | syl 14 |
. 2
|
| 31 | 1, 2, 3, 4, 5, 30 | nnind 9006 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 |
| This theorem is referenced by: nnle1eq1 9014 nngt0 9015 nnnlt1 9016 nnrecgt0 9028 nnge1d 9033 elnnnn0c 9294 elnnz1 9349 zltp1le 9380 nn0ledivnn 9842 elfz1b 10165 fzo1fzo0n0 10259 elfzom1elp1fzo 10278 fzo0sn0fzo1 10297 nnlesq 10735 faclbnd 10833 faclbnd3 10835 len0nnbi 10969 fstwrdne0 10974 cvgratz 11697 coprmgcdb 12256 isprm3 12286 pw2dvds 12334 pockthg 12526 oddennn 12609 gausslemma2dlem1a 15299 |
| Copyright terms: Public domain | W3C validator |