ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmulcli GIF version

Theorem nnmulcli 8735
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nnmulcli.1 𝐴 ∈ ℕ
nnmulcli.2 𝐵 ∈ ℕ
Assertion
Ref Expression
nnmulcli (𝐴 · 𝐵) ∈ ℕ

Proof of Theorem nnmulcli
StepHypRef Expression
1 nnmulcli.1 . 2 𝐴 ∈ ℕ
2 nnmulcli.2 . 2 𝐵 ∈ ℕ
3 nnmulcl 8734 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
41, 2, 3mp2an 422 1 (𝐴 · 𝐵) ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 1480  (class class class)co 5767   · cmul 7618  cn 8713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-1rid 7720  ax-cnre 7724
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-iota 5083  df-fv 5126  df-ov 5770  df-inn 8714
This theorem is referenced by:  numnncl2  9197  ef01bndlem  11452
  Copyright terms: Public domain W3C validator