ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmulcli GIF version

Theorem nnmulcli 9140
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nnmulcli.1 𝐴 ∈ ℕ
nnmulcli.2 𝐵 ∈ ℕ
Assertion
Ref Expression
nnmulcli (𝐴 · 𝐵) ∈ ℕ

Proof of Theorem nnmulcli
StepHypRef Expression
1 nnmulcli.1 . 2 𝐴 ∈ ℕ
2 nnmulcli.2 . 2 𝐵 ∈ ℕ
3 nnmulcl 9139 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
41, 2, 3mp2an 426 1 (𝐴 · 𝐵) ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2200  (class class class)co 6007   · cmul 8012  cn 9118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-1rid 8114  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6010  df-inn 9119
This theorem is referenced by:  numnncl2  9608  ef01bndlem  12275  pockthi  12889  dec5nprm  12945  dec2nprm  12946  lgsdir2lem5  15719
  Copyright terms: Public domain W3C validator