| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcli | GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| nnmulcli.1 | ⊢ 𝐴 ∈ ℕ |
| nnmulcli.2 | ⊢ 𝐵 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnmulcli | ⊢ (𝐴 · 𝐵) ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnmulcli.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nnmulcli.2 | . 2 ⊢ 𝐵 ∈ ℕ | |
| 3 | nnmulcl 9064 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 · 𝐵) ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 (class class class)co 5951 · cmul 7937 ℕcn 9043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4166 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-1rid 8039 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-iota 5237 df-fv 5284 df-ov 5954 df-inn 9044 |
| This theorem is referenced by: numnncl2 9533 ef01bndlem 12111 pockthi 12725 dec5nprm 12781 dec2nprm 12782 lgsdir2lem5 15553 |
| Copyright terms: Public domain | W3C validator |