![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnmulcli | GIF version |
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nnmulcli.1 | ⊢ 𝐴 ∈ ℕ |
nnmulcli.2 | ⊢ 𝐵 ∈ ℕ |
Ref | Expression |
---|---|
nnmulcli | ⊢ (𝐴 · 𝐵) ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnmulcli.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nnmulcli.2 | . 2 ⊢ 𝐵 ∈ ℕ | |
3 | nnmulcl 8989 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 · 𝐵) ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 (class class class)co 5906 · cmul 7863 ℕcn 8968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4143 ax-cnex 7949 ax-resscn 7950 ax-1cn 7951 ax-1re 7952 ax-icn 7953 ax-addcl 7954 ax-addrcl 7955 ax-mulcl 7956 ax-mulcom 7959 ax-addass 7960 ax-mulass 7961 ax-distr 7962 ax-1rid 7965 ax-cnre 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2758 df-un 3153 df-in 3155 df-ss 3162 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-br 4026 df-iota 5203 df-fv 5250 df-ov 5909 df-inn 8969 |
This theorem is referenced by: numnncl2 9456 ef01bndlem 11873 pockthi 12470 lgsdir2lem5 15076 |
Copyright terms: Public domain | W3C validator |