Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnmulcli | GIF version |
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nnmulcli.1 | ⊢ 𝐴 ∈ ℕ |
nnmulcli.2 | ⊢ 𝐵 ∈ ℕ |
Ref | Expression |
---|---|
nnmulcli | ⊢ (𝐴 · 𝐵) ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnmulcli.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nnmulcli.2 | . 2 ⊢ 𝐵 ∈ ℕ | |
3 | nnmulcl 8899 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
4 | 1, 2, 3 | mp2an 424 | 1 ⊢ (𝐴 · 𝐵) ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 (class class class)co 5853 · cmul 7779 ℕcn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 |
This theorem is referenced by: numnncl2 9365 ef01bndlem 11719 pockthi 12310 lgsdir2lem5 13727 |
Copyright terms: Public domain | W3C validator |