Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  012of Unicode version

Theorem 012of 14784
Description: Mapping zero and one between  NN0 and  om style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
Hypothesis
Ref Expression
012of.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
012of  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o

Proof of Theorem 012of
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 012of.g . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
21frechashgf1o 10430 . . . . 5  |-  G : om
-1-1-onto-> NN0
3 f1ocnv 5476 . . . . 5  |-  ( G : om -1-1-onto-> NN0  ->  `' G : NN0
-1-1-onto-> om )
4 f1of 5463 . . . . 5  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 --> om )
52, 3, 4mp2b 8 . . . 4  |-  `' G : NN0 --> om
6 0nn0 9193 . . . . 5  |-  0  e.  NN0
7 1nn0 9194 . . . . 5  |-  1  e.  NN0
8 prssi 3752 . . . . 5  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  C_  NN0 )
96, 7, 8mp2an 426 . . . 4  |-  { 0 ,  1 }  C_  NN0
10 fssres 5393 . . . 4  |-  ( ( `' G : NN0 --> om  /\  { 0 ,  1 } 
C_  NN0 )  ->  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> om )
115, 9, 10mp2an 426 . . 3  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> om
12 ffn 5367 . . 3  |-  ( ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> om  ->  ( `' G  |`  { 0 ,  1 } )  Fn  { 0 ,  1 } )
1311, 12ax-mp 5 . 2  |-  ( `' G  |`  { 0 ,  1 } )  Fn  { 0 ,  1 }
14 fvres 5541 . . . 4  |-  ( j  e.  { 0 ,  1 }  ->  (
( `' G  |`  { 0 ,  1 } ) `  j
)  =  ( `' G `  j ) )
15 elpri 3617 . . . . 5  |-  ( j  e.  { 0 ,  1 }  ->  (
j  =  0  \/  j  =  1 ) )
16 fveq2 5517 . . . . . . 7  |-  ( j  =  0  ->  ( `' G `  j )  =  ( `' G `  0 ) )
17 0zd 9267 . . . . . . . . . . 11  |-  ( T. 
->  0  e.  ZZ )
1817, 1frec2uz0d 10401 . . . . . . . . . 10  |-  ( T. 
->  ( G `  (/) )  =  0 )
1918mptru 1362 . . . . . . . . 9  |-  ( G `
 (/) )  =  0
20 peano1 4595 . . . . . . . . . 10  |-  (/)  e.  om
21 f1ocnvfv 5782 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> NN0  /\  (/)  e.  om )  ->  ( ( G `
 (/) )  =  0  ->  ( `' G `  0 )  =  (/) ) )
222, 20, 21mp2an 426 . . . . . . . . 9  |-  ( ( G `  (/) )  =  0  ->  ( `' G `  0 )  =  (/) )
2319, 22ax-mp 5 . . . . . . . 8  |-  ( `' G `  0 )  =  (/)
24 0lt2o 6444 . . . . . . . 8  |-  (/)  e.  2o
2523, 24eqeltri 2250 . . . . . . 7  |-  ( `' G `  0 )  e.  2o
2616, 25eqeltrdi 2268 . . . . . 6  |-  ( j  =  0  ->  ( `' G `  j )  e.  2o )
27 fveq2 5517 . . . . . . 7  |-  ( j  =  1  ->  ( `' G `  j )  =  ( `' G `  1 ) )
28 df-1o 6419 . . . . . . . . . . 11  |-  1o  =  suc  (/)
2928fveq2i 5520 . . . . . . . . . 10  |-  ( G `
 1o )  =  ( G `  suc  (/) )
3020a1i 9 . . . . . . . . . . . 12  |-  ( T. 
->  (/)  e.  om )
3117, 1, 30frec2uzsucd 10403 . . . . . . . . . . 11  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
3231mptru 1362 . . . . . . . . . 10  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
3319oveq1i 5887 . . . . . . . . . . 11  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
34 0p1e1 9035 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
3533, 34eqtri 2198 . . . . . . . . . 10  |-  ( ( G `  (/) )  +  1 )  =  1
3629, 32, 353eqtri 2202 . . . . . . . . 9  |-  ( G `
 1o )  =  1
37 1onn 6523 . . . . . . . . . 10  |-  1o  e.  om
38 f1ocnvfv 5782 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> NN0  /\  1o  e.  om )  ->  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o ) )
392, 37, 38mp2an 426 . . . . . . . . 9  |-  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o )
4036, 39ax-mp 5 . . . . . . . 8  |-  ( `' G `  1 )  =  1o
41 1lt2o 6445 . . . . . . . 8  |-  1o  e.  2o
4240, 41eqeltri 2250 . . . . . . 7  |-  ( `' G `  1 )  e.  2o
4327, 42eqeltrdi 2268 . . . . . 6  |-  ( j  =  1  ->  ( `' G `  j )  e.  2o )
4426, 43jaoi 716 . . . . 5  |-  ( ( j  =  0  \/  j  =  1 )  ->  ( `' G `  j )  e.  2o )
4515, 44syl 14 . . . 4  |-  ( j  e.  { 0 ,  1 }  ->  ( `' G `  j )  e.  2o )
4614, 45eqeltrd 2254 . . 3  |-  ( j  e.  { 0 ,  1 }  ->  (
( `' G  |`  { 0 ,  1 } ) `  j
)  e.  2o )
4746rgen 2530 . 2  |-  A. j  e.  { 0 ,  1 }  ( ( `' G  |`  { 0 ,  1 } ) `
 j )  e.  2o
48 ffnfv 5676 . 2  |-  ( ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o  <->  ( ( `' G  |`  { 0 ,  1 } )  Fn  { 0 ,  1 }  /\  A. j  e.  { 0 ,  1 }  (
( `' G  |`  { 0 ,  1 } ) `  j
)  e.  2o ) )
4913, 47, 48mpbir2an 942 1  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 708    = wceq 1353   T. wtru 1354    e. wcel 2148   A.wral 2455    C_ wss 3131   (/)c0 3424   {cpr 3595    |-> cmpt 4066   suc csuc 4367   omcom 4591   `'ccnv 4627    |` cres 4630    Fn wfn 5213   -->wf 5214   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877  freccfrec 6393   1oc1o 6412   2oc2o 6413   0cc0 7813   1c1 7814    + caddc 7816   NN0cn0 9178   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531
This theorem is referenced by:  isomninnlem  14817  iswomninnlem  14836  ismkvnnlem  14839
  Copyright terms: Public domain W3C validator