Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  012of Unicode version

Theorem 012of 15863
Description: Mapping zero and one between  NN0 and  om style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
Hypothesis
Ref Expression
012of.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
012of  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o

Proof of Theorem 012of
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 012of.g . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
21frechashgf1o 10571 . . . . 5  |-  G : om
-1-1-onto-> NN0
3 f1ocnv 5534 . . . . 5  |-  ( G : om -1-1-onto-> NN0  ->  `' G : NN0
-1-1-onto-> om )
4 f1of 5521 . . . . 5  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 --> om )
52, 3, 4mp2b 8 . . . 4  |-  `' G : NN0 --> om
6 0nn0 9309 . . . . 5  |-  0  e.  NN0
7 1nn0 9310 . . . . 5  |-  1  e.  NN0
8 prssi 3790 . . . . 5  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  C_  NN0 )
96, 7, 8mp2an 426 . . . 4  |-  { 0 ,  1 }  C_  NN0
10 fssres 5450 . . . 4  |-  ( ( `' G : NN0 --> om  /\  { 0 ,  1 } 
C_  NN0 )  ->  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> om )
115, 9, 10mp2an 426 . . 3  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> om
12 ffn 5424 . . 3  |-  ( ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> om  ->  ( `' G  |`  { 0 ,  1 } )  Fn  { 0 ,  1 } )
1311, 12ax-mp 5 . 2  |-  ( `' G  |`  { 0 ,  1 } )  Fn  { 0 ,  1 }
14 fvres 5599 . . . 4  |-  ( j  e.  { 0 ,  1 }  ->  (
( `' G  |`  { 0 ,  1 } ) `  j
)  =  ( `' G `  j ) )
15 elpri 3655 . . . . 5  |-  ( j  e.  { 0 ,  1 }  ->  (
j  =  0  \/  j  =  1 ) )
16 fveq2 5575 . . . . . . 7  |-  ( j  =  0  ->  ( `' G `  j )  =  ( `' G `  0 ) )
17 0zd 9383 . . . . . . . . . . 11  |-  ( T. 
->  0  e.  ZZ )
1817, 1frec2uz0d 10542 . . . . . . . . . 10  |-  ( T. 
->  ( G `  (/) )  =  0 )
1918mptru 1381 . . . . . . . . 9  |-  ( G `
 (/) )  =  0
20 peano1 4641 . . . . . . . . . 10  |-  (/)  e.  om
21 f1ocnvfv 5847 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> NN0  /\  (/)  e.  om )  ->  ( ( G `
 (/) )  =  0  ->  ( `' G `  0 )  =  (/) ) )
222, 20, 21mp2an 426 . . . . . . . . 9  |-  ( ( G `  (/) )  =  0  ->  ( `' G `  0 )  =  (/) )
2319, 22ax-mp 5 . . . . . . . 8  |-  ( `' G `  0 )  =  (/)
24 0lt2o 6526 . . . . . . . 8  |-  (/)  e.  2o
2523, 24eqeltri 2277 . . . . . . 7  |-  ( `' G `  0 )  e.  2o
2616, 25eqeltrdi 2295 . . . . . 6  |-  ( j  =  0  ->  ( `' G `  j )  e.  2o )
27 fveq2 5575 . . . . . . 7  |-  ( j  =  1  ->  ( `' G `  j )  =  ( `' G `  1 ) )
28 df-1o 6501 . . . . . . . . . . 11  |-  1o  =  suc  (/)
2928fveq2i 5578 . . . . . . . . . 10  |-  ( G `
 1o )  =  ( G `  suc  (/) )
3020a1i 9 . . . . . . . . . . . 12  |-  ( T. 
->  (/)  e.  om )
3117, 1, 30frec2uzsucd 10544 . . . . . . . . . . 11  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
3231mptru 1381 . . . . . . . . . 10  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
3319oveq1i 5953 . . . . . . . . . . 11  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
34 0p1e1 9149 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
3533, 34eqtri 2225 . . . . . . . . . 10  |-  ( ( G `  (/) )  +  1 )  =  1
3629, 32, 353eqtri 2229 . . . . . . . . 9  |-  ( G `
 1o )  =  1
37 1onn 6605 . . . . . . . . . 10  |-  1o  e.  om
38 f1ocnvfv 5847 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> NN0  /\  1o  e.  om )  ->  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o ) )
392, 37, 38mp2an 426 . . . . . . . . 9  |-  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o )
4036, 39ax-mp 5 . . . . . . . 8  |-  ( `' G `  1 )  =  1o
41 1lt2o 6527 . . . . . . . 8  |-  1o  e.  2o
4240, 41eqeltri 2277 . . . . . . 7  |-  ( `' G `  1 )  e.  2o
4327, 42eqeltrdi 2295 . . . . . 6  |-  ( j  =  1  ->  ( `' G `  j )  e.  2o )
4426, 43jaoi 717 . . . . 5  |-  ( ( j  =  0  \/  j  =  1 )  ->  ( `' G `  j )  e.  2o )
4515, 44syl 14 . . . 4  |-  ( j  e.  { 0 ,  1 }  ->  ( `' G `  j )  e.  2o )
4614, 45eqeltrd 2281 . . 3  |-  ( j  e.  { 0 ,  1 }  ->  (
( `' G  |`  { 0 ,  1 } ) `  j
)  e.  2o )
4746rgen 2558 . 2  |-  A. j  e.  { 0 ,  1 }  ( ( `' G  |`  { 0 ,  1 } ) `
 j )  e.  2o
48 ffnfv 5737 . 2  |-  ( ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o  <->  ( ( `' G  |`  { 0 ,  1 } )  Fn  { 0 ,  1 }  /\  A. j  e.  { 0 ,  1 }  (
( `' G  |`  { 0 ,  1 } ) `  j
)  e.  2o ) )
4913, 47, 48mpbir2an 944 1  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1372   T. wtru 1373    e. wcel 2175   A.wral 2483    C_ wss 3165   (/)c0 3459   {cpr 3633    |-> cmpt 4104   suc csuc 4411   omcom 4637   `'ccnv 4673    |` cres 4676    Fn wfn 5265   -->wf 5266   -1-1-onto->wf1o 5269   ` cfv 5270  (class class class)co 5943  freccfrec 6475   1oc1o 6494   2oc2o 6495   0cc0 7924   1c1 7925    + caddc 7927   NN0cn0 9294   ZZcz 9371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-recs 6390  df-frec 6476  df-1o 6501  df-2o 6502  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648
This theorem is referenced by:  isomninnlem  15902  iswomninnlem  15921  ismkvnnlem  15924
  Copyright terms: Public domain W3C validator