Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  012of Unicode version

Theorem 012of 13527
Description: Mapping zero and one between  NN0 and  om style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
Hypothesis
Ref Expression
012of.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
012of  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o

Proof of Theorem 012of
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 012of.g . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
21frechashgf1o 10309 . . . . 5  |-  G : om
-1-1-onto-> NN0
3 f1ocnv 5424 . . . . 5  |-  ( G : om -1-1-onto-> NN0  ->  `' G : NN0
-1-1-onto-> om )
4 f1of 5411 . . . . 5  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 --> om )
52, 3, 4mp2b 8 . . . 4  |-  `' G : NN0 --> om
6 0nn0 9088 . . . . 5  |-  0  e.  NN0
7 1nn0 9089 . . . . 5  |-  1  e.  NN0
8 prssi 3714 . . . . 5  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  C_  NN0 )
96, 7, 8mp2an 423 . . . 4  |-  { 0 ,  1 }  C_  NN0
10 fssres 5342 . . . 4  |-  ( ( `' G : NN0 --> om  /\  { 0 ,  1 } 
C_  NN0 )  ->  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> om )
115, 9, 10mp2an 423 . . 3  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> om
12 ffn 5316 . . 3  |-  ( ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> om  ->  ( `' G  |`  { 0 ,  1 } )  Fn  { 0 ,  1 } )
1311, 12ax-mp 5 . 2  |-  ( `' G  |`  { 0 ,  1 } )  Fn  { 0 ,  1 }
14 fvres 5489 . . . 4  |-  ( j  e.  { 0 ,  1 }  ->  (
( `' G  |`  { 0 ,  1 } ) `  j
)  =  ( `' G `  j ) )
15 elpri 3583 . . . . 5  |-  ( j  e.  { 0 ,  1 }  ->  (
j  =  0  \/  j  =  1 ) )
16 fveq2 5465 . . . . . . 7  |-  ( j  =  0  ->  ( `' G `  j )  =  ( `' G `  0 ) )
17 0zd 9162 . . . . . . . . . . 11  |-  ( T. 
->  0  e.  ZZ )
1817, 1frec2uz0d 10280 . . . . . . . . . 10  |-  ( T. 
->  ( G `  (/) )  =  0 )
1918mptru 1344 . . . . . . . . 9  |-  ( G `
 (/) )  =  0
20 peano1 4551 . . . . . . . . . 10  |-  (/)  e.  om
21 f1ocnvfv 5724 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> NN0  /\  (/)  e.  om )  ->  ( ( G `
 (/) )  =  0  ->  ( `' G `  0 )  =  (/) ) )
222, 20, 21mp2an 423 . . . . . . . . 9  |-  ( ( G `  (/) )  =  0  ->  ( `' G `  0 )  =  (/) )
2319, 22ax-mp 5 . . . . . . . 8  |-  ( `' G `  0 )  =  (/)
24 0lt2o 6382 . . . . . . . 8  |-  (/)  e.  2o
2523, 24eqeltri 2230 . . . . . . 7  |-  ( `' G `  0 )  e.  2o
2616, 25eqeltrdi 2248 . . . . . 6  |-  ( j  =  0  ->  ( `' G `  j )  e.  2o )
27 fveq2 5465 . . . . . . 7  |-  ( j  =  1  ->  ( `' G `  j )  =  ( `' G `  1 ) )
28 df-1o 6357 . . . . . . . . . . 11  |-  1o  =  suc  (/)
2928fveq2i 5468 . . . . . . . . . 10  |-  ( G `
 1o )  =  ( G `  suc  (/) )
3020a1i 9 . . . . . . . . . . . 12  |-  ( T. 
->  (/)  e.  om )
3117, 1, 30frec2uzsucd 10282 . . . . . . . . . . 11  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
3231mptru 1344 . . . . . . . . . 10  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
3319oveq1i 5828 . . . . . . . . . . 11  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
34 0p1e1 8930 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
3533, 34eqtri 2178 . . . . . . . . . 10  |-  ( ( G `  (/) )  +  1 )  =  1
3629, 32, 353eqtri 2182 . . . . . . . . 9  |-  ( G `
 1o )  =  1
37 1onn 6460 . . . . . . . . . 10  |-  1o  e.  om
38 f1ocnvfv 5724 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> NN0  /\  1o  e.  om )  ->  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o ) )
392, 37, 38mp2an 423 . . . . . . . . 9  |-  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o )
4036, 39ax-mp 5 . . . . . . . 8  |-  ( `' G `  1 )  =  1o
41 1lt2o 6383 . . . . . . . 8  |-  1o  e.  2o
4240, 41eqeltri 2230 . . . . . . 7  |-  ( `' G `  1 )  e.  2o
4327, 42eqeltrdi 2248 . . . . . 6  |-  ( j  =  1  ->  ( `' G `  j )  e.  2o )
4426, 43jaoi 706 . . . . 5  |-  ( ( j  =  0  \/  j  =  1 )  ->  ( `' G `  j )  e.  2o )
4515, 44syl 14 . . . 4  |-  ( j  e.  { 0 ,  1 }  ->  ( `' G `  j )  e.  2o )
4614, 45eqeltrd 2234 . . 3  |-  ( j  e.  { 0 ,  1 }  ->  (
( `' G  |`  { 0 ,  1 } ) `  j
)  e.  2o )
4746rgen 2510 . 2  |-  A. j  e.  { 0 ,  1 }  ( ( `' G  |`  { 0 ,  1 } ) `
 j )  e.  2o
48 ffnfv 5622 . 2  |-  ( ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o  <->  ( ( `' G  |`  { 0 ,  1 } )  Fn  { 0 ,  1 }  /\  A. j  e.  { 0 ,  1 }  (
( `' G  |`  { 0 ,  1 } ) `  j
)  e.  2o ) )
4913, 47, 48mpbir2an 927 1  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1335   T. wtru 1336    e. wcel 2128   A.wral 2435    C_ wss 3102   (/)c0 3394   {cpr 3561    |-> cmpt 4025   suc csuc 4324   omcom 4547   `'ccnv 4582    |` cres 4585    Fn wfn 5162   -->wf 5163   -1-1-onto->wf1o 5166   ` cfv 5167  (class class class)co 5818  freccfrec 6331   1oc1o 6350   2oc2o 6351   0cc0 7715   1c1 7716    + caddc 7718   NN0cn0 9073   ZZcz 9150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-addass 7817  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-0id 7823  ax-rnegex 7824  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-ltadd 7831
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-recs 6246  df-frec 6332  df-1o 6357  df-2o 6358  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-inn 8817  df-n0 9074  df-z 9151  df-uz 9423
This theorem is referenced by:  isomninnlem  13563  iswomninnlem  13582  ismkvnnlem  13585
  Copyright terms: Public domain W3C validator