| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nqnq0m | Unicode version | ||
| Description: Multiplication of
positive fractions is equal with |
| Ref | Expression |
|---|---|
| nqnq0m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqpi 7473 |
. . . 4
| |
| 2 | nqpi 7473 |
. . . 4
| |
| 3 | 1, 2 | anim12i 338 |
. . 3
|
| 4 | ee4anv 1961 |
. . 3
| |
| 5 | 3, 4 | sylibr 134 |
. 2
|
| 6 | oveq12 5943 |
. . . . . . 7
| |
| 7 | mulpiord 7412 |
. . . . . . . . . . 11
| |
| 8 | 7 | ad2ant2r 509 |
. . . . . . . . . 10
|
| 9 | mulpiord 7412 |
. . . . . . . . . . 11
| |
| 10 | 9 | ad2ant2l 508 |
. . . . . . . . . 10
|
| 11 | 8, 10 | opeq12d 3826 |
. . . . . . . . 9
|
| 12 | 11 | eceq1d 6646 |
. . . . . . . 8
|
| 13 | mulpipqqs 7468 |
. . . . . . . . 9
| |
| 14 | mulclpi 7423 |
. . . . . . . . . . 11
| |
| 15 | 14 | ad2ant2r 509 |
. . . . . . . . . 10
|
| 16 | mulclpi 7423 |
. . . . . . . . . . 11
| |
| 17 | 16 | ad2ant2l 508 |
. . . . . . . . . 10
|
| 18 | nqnq0pi 7533 |
. . . . . . . . . 10
| |
| 19 | 15, 17, 18 | syl2anc 411 |
. . . . . . . . 9
|
| 20 | 13, 19 | eqtr4d 2240 |
. . . . . . . 8
|
| 21 | pinn 7404 |
. . . . . . . . . 10
| |
| 22 | 21 | anim1i 340 |
. . . . . . . . 9
|
| 23 | pinn 7404 |
. . . . . . . . . 10
| |
| 24 | 23 | anim1i 340 |
. . . . . . . . 9
|
| 25 | mulnnnq0 7545 |
. . . . . . . . 9
| |
| 26 | 22, 24, 25 | syl2an 289 |
. . . . . . . 8
|
| 27 | 12, 20, 26 | 3eqtr4d 2247 |
. . . . . . 7
|
| 28 | 6, 27 | sylan9eqr 2259 |
. . . . . 6
|
| 29 | nqnq0pi 7533 |
. . . . . . . . . . 11
| |
| 30 | 29 | adantr 276 |
. . . . . . . . . 10
|
| 31 | 30 | eqeq2d 2216 |
. . . . . . . . 9
|
| 32 | nqnq0pi 7533 |
. . . . . . . . . . 11
| |
| 33 | 32 | adantl 277 |
. . . . . . . . . 10
|
| 34 | 33 | eqeq2d 2216 |
. . . . . . . . 9
|
| 35 | 31, 34 | anbi12d 473 |
. . . . . . . 8
|
| 36 | 35 | pm5.32i 454 |
. . . . . . 7
|
| 37 | oveq12 5943 |
. . . . . . . 8
| |
| 38 | 37 | adantl 277 |
. . . . . . 7
|
| 39 | 36, 38 | sylbir 135 |
. . . . . 6
|
| 40 | 28, 39 | eqtr4d 2240 |
. . . . 5
|
| 41 | 40 | an4s 588 |
. . . 4
|
| 42 | 41 | exlimivv 1919 |
. . 3
|
| 43 | 42 | exlimivv 1919 |
. 2
|
| 44 | 5, 43 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-oadd 6496 df-omul 6497 df-er 6610 df-ec 6612 df-qs 6616 df-ni 7399 df-mi 7401 df-mpq 7440 df-enq 7442 df-nqqs 7443 df-mqqs 7445 df-enq0 7519 df-nq0 7520 df-mq0 7523 |
| This theorem is referenced by: prarloclemlo 7589 prarloclemcalc 7597 |
| Copyright terms: Public domain | W3C validator |