ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0m Unicode version

Theorem nqnq0m 7522
Description: Multiplication of positive fractions is equal with 
.Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0m  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( A ·Q0  B ) )

Proof of Theorem nqnq0m
Dummy variables  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7445 . . . 4  |-  ( A  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  ) )
2 nqpi 7445 . . . 4  |-  ( B  e.  Q.  ->  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )
31, 2anim12i 338 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
4 ee4anv 1953 . . 3  |-  ( E. z E. w E. v E. u ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  (
( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  <->  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
53, 4sylibr 134 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. z E. w E. v E. u ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
6 oveq12 5931 . . . . . . 7  |-  ( ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  )  ->  ( A  .Q  B )  =  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  ) )
7 mulpiord 7384 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  =  ( z  .o  v ) )
87ad2ant2r 509 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  v )  =  ( z  .o  v ) )
9 mulpiord 7384 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  =  ( w  .o  u ) )
109ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  =  ( w  .o  u ) )
118, 10opeq12d 3816 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  <. ( z  .N  v ) ,  ( w  .N  u
) >.  =  <. (
z  .o  v ) ,  ( w  .o  u ) >. )
1211eceq1d 6628 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ] ~Q0  =  [ <. (
z  .o  v ) ,  ( w  .o  u ) >. ] ~Q0  )
13 mulpipqqs 7440 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ]  ~Q  )
14 mulclpi 7395 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  e.  N. )
1514ad2ant2r 509 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  v )  e.  N. )
16 mulclpi 7395 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
1716ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
18 nqnq0pi 7505 . . . . . . . . . 10  |-  ( ( ( z  .N  v
)  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  [ <. ( z  .N  v ) ,  ( w  .N  u )
>. ] ~Q0  =  [ <. ( z  .N  v ) ,  ( w  .N  u )
>. ]  ~Q  )
1915, 17, 18syl2anc 411 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ] ~Q0  =  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ]  ~Q  )
2013, 19eqtr4d 2232 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ] ~Q0  )
21 pinn 7376 . . . . . . . . . 10  |-  ( z  e.  N.  ->  z  e.  om )
2221anim1i 340 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  e.  om  /\  w  e.  N. )
)
23 pinn 7376 . . . . . . . . . 10  |-  ( v  e.  N.  ->  v  e.  om )
2423anim1i 340 . . . . . . . . 9  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( v  e.  om  /\  u  e.  N. )
)
25 mulnnnq0 7517 . . . . . . . . 9  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  ( v  e.  om  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  )  =  [ <. (
z  .o  v ) ,  ( w  .o  u ) >. ] ~Q0  )
2622, 24, 25syl2an 289 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  )  =  [ <. (
z  .o  v ) ,  ( w  .o  u ) >. ] ~Q0  )
2712, 20, 263eqtr4d 2239 . . . . . . 7  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  )  =  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  ) )
286, 27sylan9eqr 2251 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  .Q  B )  =  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  ) )
29 nqnq0pi 7505 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  [ <. z ,  w >. ] ~Q0  =  [ <. z ,  w >. ]  ~Q  )
3029adantr 276 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. z ,  w >. ] ~Q0  =  [ <. z ,  w >. ]  ~Q  )
3130eqeq2d 2208 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( A  =  [ <. z ,  w >. ] ~Q0  <->  A  =  [ <. z ,  w >. ]  ~Q  )
)
32 nqnq0pi 7505 . . . . . . . . . . 11  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  [ <. v ,  u >. ] ~Q0  =  [ <. v ,  u >. ]  ~Q  )
3332adantl 277 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. v ,  u >. ] ~Q0  =  [ <. v ,  u >. ]  ~Q  )
3433eqeq2d 2208 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( B  =  [ <. v ,  u >. ] ~Q0  <->  B  =  [ <. v ,  u >. ]  ~Q  )
)
3531, 34anbi12d 473 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )  <->  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
3635pm5.32i 454 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )
)  <->  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
37 oveq12 5931 . . . . . . . 8  |-  ( ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )  ->  ( A ·Q0 
B )  =  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  ) )
3837adantl 277 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )
)  ->  ( A ·Q0  B )  =  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  ) )
3936, 38sylbir 135 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A ·Q0 
B )  =  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  ) )
4028, 39eqtr4d 2232 . . . . 5  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  .Q  B )  =  ( A ·Q0  B ) )
4140an4s 588 . . . 4  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  .Q  B )  =  ( A ·Q0  B ) )
4241exlimivv 1911 . . 3  |-  ( E. v E. u ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  .Q  B )  =  ( A ·Q0  B ) )
4342exlimivv 1911 . 2  |-  ( E. z E. w E. v E. u ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  (
( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  -> 
( A  .Q  B
)  =  ( A ·Q0  B ) )
445, 43syl 14 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( A ·Q0  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   <.cop 3625   omcom 4626  (class class class)co 5922    .o comu 6472   [cec 6590   N.cnpi 7339    .N cmi 7341    ~Q ceq 7346   Q.cnq 7347    .Q cmq 7350   ~Q0 ceq0 7353   ·Q0 cmq0 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-mqqs 7417  df-enq0 7491  df-nq0 7492  df-mq0 7495
This theorem is referenced by:  prarloclemlo  7561  prarloclemcalc  7569
  Copyright terms: Public domain W3C validator