ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0m Unicode version

Theorem nqnq0m 7550
Description: Multiplication of positive fractions is equal with 
.Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0m  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( A ·Q0  B ) )

Proof of Theorem nqnq0m
Dummy variables  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7473 . . . 4  |-  ( A  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  ) )
2 nqpi 7473 . . . 4  |-  ( B  e.  Q.  ->  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )
31, 2anim12i 338 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
4 ee4anv 1961 . . 3  |-  ( E. z E. w E. v E. u ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  (
( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  <->  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
53, 4sylibr 134 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. z E. w E. v E. u ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
6 oveq12 5943 . . . . . . 7  |-  ( ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  )  ->  ( A  .Q  B )  =  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  ) )
7 mulpiord 7412 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  =  ( z  .o  v ) )
87ad2ant2r 509 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  v )  =  ( z  .o  v ) )
9 mulpiord 7412 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  =  ( w  .o  u ) )
109ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  =  ( w  .o  u ) )
118, 10opeq12d 3826 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  <. ( z  .N  v ) ,  ( w  .N  u
) >.  =  <. (
z  .o  v ) ,  ( w  .o  u ) >. )
1211eceq1d 6646 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ] ~Q0  =  [ <. (
z  .o  v ) ,  ( w  .o  u ) >. ] ~Q0  )
13 mulpipqqs 7468 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ]  ~Q  )
14 mulclpi 7423 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  e.  N. )
1514ad2ant2r 509 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  v )  e.  N. )
16 mulclpi 7423 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
1716ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
18 nqnq0pi 7533 . . . . . . . . . 10  |-  ( ( ( z  .N  v
)  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  [ <. ( z  .N  v ) ,  ( w  .N  u )
>. ] ~Q0  =  [ <. ( z  .N  v ) ,  ( w  .N  u )
>. ]  ~Q  )
1915, 17, 18syl2anc 411 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ] ~Q0  =  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ]  ~Q  )
2013, 19eqtr4d 2240 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
z  .N  v ) ,  ( w  .N  u ) >. ] ~Q0  )
21 pinn 7404 . . . . . . . . . 10  |-  ( z  e.  N.  ->  z  e.  om )
2221anim1i 340 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  e.  om  /\  w  e.  N. )
)
23 pinn 7404 . . . . . . . . . 10  |-  ( v  e.  N.  ->  v  e.  om )
2423anim1i 340 . . . . . . . . 9  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( v  e.  om  /\  u  e.  N. )
)
25 mulnnnq0 7545 . . . . . . . . 9  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  ( v  e.  om  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  )  =  [ <. (
z  .o  v ) ,  ( w  .o  u ) >. ] ~Q0  )
2622, 24, 25syl2an 289 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  )  =  [ <. (
z  .o  v ) ,  ( w  .o  u ) >. ] ~Q0  )
2712, 20, 263eqtr4d 2247 . . . . . . 7  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  )  =  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  ) )
286, 27sylan9eqr 2259 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  .Q  B )  =  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  ) )
29 nqnq0pi 7533 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  [ <. z ,  w >. ] ~Q0  =  [ <. z ,  w >. ]  ~Q  )
3029adantr 276 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. z ,  w >. ] ~Q0  =  [ <. z ,  w >. ]  ~Q  )
3130eqeq2d 2216 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( A  =  [ <. z ,  w >. ] ~Q0  <->  A  =  [ <. z ,  w >. ]  ~Q  )
)
32 nqnq0pi 7533 . . . . . . . . . . 11  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  [ <. v ,  u >. ] ~Q0  =  [ <. v ,  u >. ]  ~Q  )
3332adantl 277 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. v ,  u >. ] ~Q0  =  [ <. v ,  u >. ]  ~Q  )
3433eqeq2d 2216 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( B  =  [ <. v ,  u >. ] ~Q0  <->  B  =  [ <. v ,  u >. ]  ~Q  )
)
3531, 34anbi12d 473 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )  <->  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
3635pm5.32i 454 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )
)  <->  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
37 oveq12 5943 . . . . . . . 8  |-  ( ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )  ->  ( A ·Q0 
B )  =  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  ) )
3837adantl 277 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )
)  ->  ( A ·Q0  B )  =  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  ) )
3936, 38sylbir 135 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A ·Q0 
B )  =  ( [ <. z ,  w >. ] ~Q0 ·Q0  [ <. v ,  u >. ] ~Q0  ) )
4028, 39eqtr4d 2240 . . . . 5  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  .Q  B )  =  ( A ·Q0  B ) )
4140an4s 588 . . . 4  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  .Q  B )  =  ( A ·Q0  B ) )
4241exlimivv 1919 . . 3  |-  ( E. v E. u ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  .Q  B )  =  ( A ·Q0  B ) )
4342exlimivv 1919 . 2  |-  ( E. z E. w E. v E. u ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  (
( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  -> 
( A  .Q  B
)  =  ( A ·Q0  B ) )
445, 43syl 14 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( A ·Q0  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372   E.wex 1514    e. wcel 2175   <.cop 3635   omcom 4636  (class class class)co 5934    .o comu 6490   [cec 6608   N.cnpi 7367    .N cmi 7369    ~Q ceq 7374   Q.cnq 7375    .Q cmq 7378   ~Q0 ceq0 7381   ·Q0 cmq0 7385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-mi 7401  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-mqqs 7445  df-enq0 7519  df-nq0 7520  df-mq0 7523
This theorem is referenced by:  prarloclemlo  7589  prarloclemcalc  7597
  Copyright terms: Public domain W3C validator