ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0a Unicode version

Theorem nqnq0a 7649
Description: Addition of positive fractions is equal with  +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0a  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( A +Q0  B
) )

Proof of Theorem nqnq0a
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7573 . . . 4  |-  ( A  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  ) )
2 nqpi 7573 . . . 4  |-  ( B  e.  Q.  ->  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )
31, 2anim12i 338 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
4 ee4anv 1985 . . 3  |-  ( E. z E. w E. v E. u ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  (
( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  <->  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
53, 4sylibr 134 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. z E. w E. v E. u ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
6 oveq12 6016 . . . . . . 7  |-  ( ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  )  ->  ( A  +Q  B )  =  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  ) )
7 mulclpi 7523 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  u  e.  N. )  ->  ( z  .N  u
)  e.  N. )
87ad2ant2rl 511 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  u )  e.  N. )
9 mulclpi 7523 . . . . . . . . . . . . 13  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  ( w  .N  v
)  e.  N. )
109ad2ant2lr 510 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  v )  e.  N. )
11 addpiord 7511 . . . . . . . . . . . 12  |-  ( ( ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( ( z  .N  u )  +N  (
w  .N  v ) )  =  ( ( z  .N  u )  +o  ( w  .N  v ) ) )
128, 10, 11syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  =  ( ( z  .N  u )  +o  (
w  .N  v ) ) )
13 mulpiord 7512 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  u  e.  N. )  ->  ( z  .N  u
)  =  ( z  .o  u ) )
1413ad2ant2rl 511 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  u )  =  ( z  .o  u ) )
15 mulpiord 7512 . . . . . . . . . . . . 13  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  ( w  .N  v
)  =  ( w  .o  v ) )
1615ad2ant2lr 510 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  v )  =  ( w  .o  v ) )
1714, 16oveq12d 6025 . . . . . . . . . . 11  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +o  ( w  .N  v ) )  =  ( ( z  .o  u )  +o  (
w  .o  v ) ) )
1812, 17eqtrd 2262 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  =  ( ( z  .o  u )  +o  (
w  .o  v ) ) )
19 mulpiord 7512 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  =  ( w  .o  u ) )
2019ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  =  ( w  .o  u ) )
2118, 20opeq12d 3865 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  <. ( ( z  .N  u )  +N  ( w  .N  v ) ) ,  ( w  .N  u
) >.  =  <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. )
2221eceq1d 6724 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ] ~Q0  =  [ <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. ] ~Q0  )
23 addpipqqs 7565 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )
24 addclpi 7522 . . . . . . . . . . 11  |-  ( ( ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N. )
258, 10, 24syl2anc 411 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  e. 
N. )
26 mulclpi 7523 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
2726ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
28 nqnq0pi 7633 . . . . . . . . . 10  |-  ( ( ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  [ <. ( ( z  .N  u )  +N  ( w  .N  v
) ) ,  ( w  .N  u )
>. ] ~Q0  =  [ <. ( ( z  .N  u )  +N  ( w  .N  v
) ) ,  ( w  .N  u )
>. ]  ~Q  )
2925, 27, 28syl2anc 411 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ] ~Q0  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )
3023, 29eqtr4d 2265 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ] ~Q0  )
31 pinn 7504 . . . . . . . . . 10  |-  ( z  e.  N.  ->  z  e.  om )
3231anim1i 340 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  e.  om  /\  w  e.  N. )
)
33 pinn 7504 . . . . . . . . . 10  |-  ( v  e.  N.  ->  v  e.  om )
3433anim1i 340 . . . . . . . . 9  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( v  e.  om  /\  u  e.  N. )
)
35 addnnnq0 7644 . . . . . . . . 9  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  ( v  e.  om  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  )  =  [ <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. ] ~Q0  )
3632, 34, 35syl2an 289 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  )  =  [ <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. ] ~Q0  )
3722, 30, 363eqtr4d 2272 . . . . . . 7  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
386, 37sylan9eqr 2284 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
39 nqnq0pi 7633 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  [ <. z ,  w >. ] ~Q0  =  [ <. z ,  w >. ]  ~Q  )
4039adantr 276 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. z ,  w >. ] ~Q0  =  [ <. z ,  w >. ]  ~Q  )
4140eqeq2d 2241 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( A  =  [ <. z ,  w >. ] ~Q0  <->  A  =  [ <. z ,  w >. ]  ~Q  )
)
42 nqnq0pi 7633 . . . . . . . . . . 11  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  [ <. v ,  u >. ] ~Q0  =  [ <. v ,  u >. ]  ~Q  )
4342adantl 277 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. v ,  u >. ] ~Q0  =  [ <. v ,  u >. ]  ~Q  )
4443eqeq2d 2241 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( B  =  [ <. v ,  u >. ] ~Q0  <->  B  =  [ <. v ,  u >. ]  ~Q  )
)
4541, 44anbi12d 473 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )  <->  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
4645pm5.32i 454 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )
)  <->  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
47 oveq12 6016 . . . . . . . 8  |-  ( ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )  ->  ( A +Q0  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
4847adantl 277 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )
)  ->  ( A +Q0  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  )
)
4946, 48sylbir 135 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A +Q0  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
5038, 49eqtr4d 2265 . . . . 5  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( A +Q0  B ) )
5150an4s 590 . . . 4  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( A +Q0  B ) )
5251exlimivv 1943 . . 3  |-  ( E. v E. u ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( A +Q0  B ) )
5352exlimivv 1943 . 2  |-  ( E. z E. w E. v E. u ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  (
( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  -> 
( A  +Q  B
)  =  ( A +Q0  B
) )
545, 53syl 14 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( A +Q0  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   <.cop 3669   omcom 4682  (class class class)co 6007    +o coa 6565    .o comu 6566   [cec 6686   N.cnpi 7467    +N cpli 7468    .N cmi 7469    ~Q ceq 7474   Q.cnq 7475    +Q cplq 7477   ~Q0 ceq0 7481   +Q0 cplq0 7484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-pli 7500  df-mi 7501  df-plpq 7539  df-enq 7542  df-nqqs 7543  df-plqqs 7544  df-enq0 7619  df-nq0 7620  df-plq0 7622
This theorem is referenced by:  prarloclemlo  7689  prarloclemcalc  7697
  Copyright terms: Public domain W3C validator