ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0a Unicode version

Theorem nqnq0a 7514
Description: Addition of positive fractions is equal with  +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0a  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( A +Q0  B
) )

Proof of Theorem nqnq0a
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7438 . . . 4  |-  ( A  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  ) )
2 nqpi 7438 . . . 4  |-  ( B  e.  Q.  ->  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )
31, 2anim12i 338 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
4 ee4anv 1950 . . 3  |-  ( E. z E. w E. v E. u ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  (
( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  <->  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
53, 4sylibr 134 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. z E. w E. v E. u ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
6 oveq12 5927 . . . . . . 7  |-  ( ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  )  ->  ( A  +Q  B )  =  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  ) )
7 mulclpi 7388 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  u  e.  N. )  ->  ( z  .N  u
)  e.  N. )
87ad2ant2rl 511 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  u )  e.  N. )
9 mulclpi 7388 . . . . . . . . . . . . 13  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  ( w  .N  v
)  e.  N. )
109ad2ant2lr 510 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  v )  e.  N. )
11 addpiord 7376 . . . . . . . . . . . 12  |-  ( ( ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( ( z  .N  u )  +N  (
w  .N  v ) )  =  ( ( z  .N  u )  +o  ( w  .N  v ) ) )
128, 10, 11syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  =  ( ( z  .N  u )  +o  (
w  .N  v ) ) )
13 mulpiord 7377 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  u  e.  N. )  ->  ( z  .N  u
)  =  ( z  .o  u ) )
1413ad2ant2rl 511 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  u )  =  ( z  .o  u ) )
15 mulpiord 7377 . . . . . . . . . . . . 13  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  ( w  .N  v
)  =  ( w  .o  v ) )
1615ad2ant2lr 510 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  v )  =  ( w  .o  v ) )
1714, 16oveq12d 5936 . . . . . . . . . . 11  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +o  ( w  .N  v ) )  =  ( ( z  .o  u )  +o  (
w  .o  v ) ) )
1812, 17eqtrd 2226 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  =  ( ( z  .o  u )  +o  (
w  .o  v ) ) )
19 mulpiord 7377 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  =  ( w  .o  u ) )
2019ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  =  ( w  .o  u ) )
2118, 20opeq12d 3812 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  <. ( ( z  .N  u )  +N  ( w  .N  v ) ) ,  ( w  .N  u
) >.  =  <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. )
2221eceq1d 6623 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ] ~Q0  =  [ <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. ] ~Q0  )
23 addpipqqs 7430 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )
24 addclpi 7387 . . . . . . . . . . 11  |-  ( ( ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N. )
258, 10, 24syl2anc 411 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  e. 
N. )
26 mulclpi 7388 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
2726ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
28 nqnq0pi 7498 . . . . . . . . . 10  |-  ( ( ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  [ <. ( ( z  .N  u )  +N  ( w  .N  v
) ) ,  ( w  .N  u )
>. ] ~Q0  =  [ <. ( ( z  .N  u )  +N  ( w  .N  v
) ) ,  ( w  .N  u )
>. ]  ~Q  )
2925, 27, 28syl2anc 411 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ] ~Q0  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )
3023, 29eqtr4d 2229 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ] ~Q0  )
31 pinn 7369 . . . . . . . . . 10  |-  ( z  e.  N.  ->  z  e.  om )
3231anim1i 340 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  e.  om  /\  w  e.  N. )
)
33 pinn 7369 . . . . . . . . . 10  |-  ( v  e.  N.  ->  v  e.  om )
3433anim1i 340 . . . . . . . . 9  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( v  e.  om  /\  u  e.  N. )
)
35 addnnnq0 7509 . . . . . . . . 9  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  ( v  e.  om  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  )  =  [ <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. ] ~Q0  )
3632, 34, 35syl2an 289 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  )  =  [ <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. ] ~Q0  )
3722, 30, 363eqtr4d 2236 . . . . . . 7  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
386, 37sylan9eqr 2248 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
39 nqnq0pi 7498 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  [ <. z ,  w >. ] ~Q0  =  [ <. z ,  w >. ]  ~Q  )
4039adantr 276 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. z ,  w >. ] ~Q0  =  [ <. z ,  w >. ]  ~Q  )
4140eqeq2d 2205 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( A  =  [ <. z ,  w >. ] ~Q0  <->  A  =  [ <. z ,  w >. ]  ~Q  )
)
42 nqnq0pi 7498 . . . . . . . . . . 11  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  [ <. v ,  u >. ] ~Q0  =  [ <. v ,  u >. ]  ~Q  )
4342adantl 277 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. v ,  u >. ] ~Q0  =  [ <. v ,  u >. ]  ~Q  )
4443eqeq2d 2205 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( B  =  [ <. v ,  u >. ] ~Q0  <->  B  =  [ <. v ,  u >. ]  ~Q  )
)
4541, 44anbi12d 473 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )  <->  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
4645pm5.32i 454 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )
)  <->  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
47 oveq12 5927 . . . . . . . 8  |-  ( ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )  ->  ( A +Q0  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
4847adantl 277 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )
)  ->  ( A +Q0  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  )
)
4946, 48sylbir 135 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A +Q0  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
5038, 49eqtr4d 2229 . . . . 5  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( A +Q0  B ) )
5150an4s 588 . . . 4  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( A +Q0  B ) )
5251exlimivv 1908 . . 3  |-  ( E. v E. u ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( A +Q0  B ) )
5352exlimivv 1908 . 2  |-  ( E. z E. w E. v E. u ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  (
( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  -> 
( A  +Q  B
)  =  ( A +Q0  B
) )
545, 53syl 14 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( A +Q0  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   <.cop 3621   omcom 4622  (class class class)co 5918    +o coa 6466    .o comu 6467   [cec 6585   N.cnpi 7332    +N cpli 7333    .N cmi 7334    ~Q ceq 7339   Q.cnq 7340    +Q cplq 7342   ~Q0 ceq0 7346   +Q0 cplq0 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-plpq 7404  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-enq0 7484  df-nq0 7485  df-plq0 7487
This theorem is referenced by:  prarloclemlo  7554  prarloclemcalc  7562
  Copyright terms: Public domain W3C validator