ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0a Unicode version

Theorem nqnq0a 7574
Description: Addition of positive fractions is equal with  +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0a  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( A +Q0  B
) )

Proof of Theorem nqnq0a
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7498 . . . 4  |-  ( A  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  ) )
2 nqpi 7498 . . . 4  |-  ( B  e.  Q.  ->  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )
31, 2anim12i 338 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
4 ee4anv 1963 . . 3  |-  ( E. z E. w E. v E. u ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  (
( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  <->  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  E. v E. u ( ( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
53, 4sylibr 134 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. z E. w E. v E. u ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
6 oveq12 5960 . . . . . . 7  |-  ( ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  )  ->  ( A  +Q  B )  =  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  ) )
7 mulclpi 7448 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  u  e.  N. )  ->  ( z  .N  u
)  e.  N. )
87ad2ant2rl 511 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  u )  e.  N. )
9 mulclpi 7448 . . . . . . . . . . . . 13  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  ( w  .N  v
)  e.  N. )
109ad2ant2lr 510 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  v )  e.  N. )
11 addpiord 7436 . . . . . . . . . . . 12  |-  ( ( ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( ( z  .N  u )  +N  (
w  .N  v ) )  =  ( ( z  .N  u )  +o  ( w  .N  v ) ) )
128, 10, 11syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  =  ( ( z  .N  u )  +o  (
w  .N  v ) ) )
13 mulpiord 7437 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  u  e.  N. )  ->  ( z  .N  u
)  =  ( z  .o  u ) )
1413ad2ant2rl 511 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  .N  u )  =  ( z  .o  u ) )
15 mulpiord 7437 . . . . . . . . . . . . 13  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  ( w  .N  v
)  =  ( w  .o  v ) )
1615ad2ant2lr 510 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  v )  =  ( w  .o  v ) )
1714, 16oveq12d 5969 . . . . . . . . . . 11  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +o  ( w  .N  v ) )  =  ( ( z  .o  u )  +o  (
w  .o  v ) ) )
1812, 17eqtrd 2239 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  =  ( ( z  .o  u )  +o  (
w  .o  v ) ) )
19 mulpiord 7437 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  =  ( w  .o  u ) )
2019ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  =  ( w  .o  u ) )
2118, 20opeq12d 3829 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  <. ( ( z  .N  u )  +N  ( w  .N  v ) ) ,  ( w  .N  u
) >.  =  <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. )
2221eceq1d 6663 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ] ~Q0  =  [ <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. ] ~Q0  )
23 addpipqqs 7490 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )
24 addclpi 7447 . . . . . . . . . . 11  |-  ( ( ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N. )
258, 10, 24syl2anc 411 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  e. 
N. )
26 mulclpi 7448 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
2726ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
28 nqnq0pi 7558 . . . . . . . . . 10  |-  ( ( ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  [ <. ( ( z  .N  u )  +N  ( w  .N  v
) ) ,  ( w  .N  u )
>. ] ~Q0  =  [ <. ( ( z  .N  u )  +N  ( w  .N  v
) ) ,  ( w  .N  u )
>. ]  ~Q  )
2925, 27, 28syl2anc 411 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ] ~Q0  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )
3023, 29eqtr4d 2242 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ] ~Q0  )
31 pinn 7429 . . . . . . . . . 10  |-  ( z  e.  N.  ->  z  e.  om )
3231anim1i 340 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  e.  om  /\  w  e.  N. )
)
33 pinn 7429 . . . . . . . . . 10  |-  ( v  e.  N.  ->  v  e.  om )
3433anim1i 340 . . . . . . . . 9  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( v  e.  om  /\  u  e.  N. )
)
35 addnnnq0 7569 . . . . . . . . 9  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  ( v  e.  om  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  )  =  [ <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. ] ~Q0  )
3632, 34, 35syl2an 289 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  )  =  [ <. (
( z  .o  u
)  +o  ( w  .o  v ) ) ,  ( w  .o  u ) >. ] ~Q0  )
3722, 30, 363eqtr4d 2249 . . . . . . 7  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
386, 37sylan9eqr 2261 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
39 nqnq0pi 7558 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  [ <. z ,  w >. ] ~Q0  =  [ <. z ,  w >. ]  ~Q  )
4039adantr 276 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. z ,  w >. ] ~Q0  =  [ <. z ,  w >. ]  ~Q  )
4140eqeq2d 2218 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( A  =  [ <. z ,  w >. ] ~Q0  <->  A  =  [ <. z ,  w >. ]  ~Q  )
)
42 nqnq0pi 7558 . . . . . . . . . . 11  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  [ <. v ,  u >. ] ~Q0  =  [ <. v ,  u >. ]  ~Q  )
4342adantl 277 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  [ <. v ,  u >. ] ~Q0  =  [ <. v ,  u >. ]  ~Q  )
4443eqeq2d 2218 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( B  =  [ <. v ,  u >. ] ~Q0  <->  B  =  [ <. v ,  u >. ]  ~Q  )
)
4541, 44anbi12d 473 . . . . . . . 8  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )  <->  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
4645pm5.32i 454 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )
)  <->  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) ) )
47 oveq12 5960 . . . . . . . 8  |-  ( ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )  ->  ( A +Q0  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
4847adantl 277 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ] ~Q0  /\  B  =  [ <. v ,  u >. ] ~Q0  )
)  ->  ( A +Q0  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  )
)
4946, 48sylbir 135 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A +Q0  B )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. v ,  u >. ] ~Q0  ) )
5038, 49eqtr4d 2242 . . . . 5  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
)  /\  ( A  =  [ <. z ,  w >. ]  ~Q  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( A +Q0  B ) )
5150an4s 588 . . . 4  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( A +Q0  B ) )
5251exlimivv 1921 . . 3  |-  ( E. v E. u ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  ->  ( A  +Q  B )  =  ( A +Q0  B ) )
5352exlimivv 1921 . 2  |-  ( E. z E. w E. v E. u ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  /\  (
( v  e.  N.  /\  u  e.  N. )  /\  B  =  [ <. v ,  u >. ]  ~Q  ) )  -> 
( A  +Q  B
)  =  ( A +Q0  B
) )
545, 53syl 14 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( A +Q0  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177   <.cop 3637   omcom 4642  (class class class)co 5951    +o coa 6506    .o comu 6507   [cec 6625   N.cnpi 7392    +N cpli 7393    .N cmi 7394    ~Q ceq 7399   Q.cnq 7400    +Q cplq 7402   ~Q0 ceq0 7406   +Q0 cplq0 7409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-plpq 7464  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-enq0 7544  df-nq0 7545  df-plq0 7547
This theorem is referenced by:  prarloclemlo  7614  prarloclemcalc  7622
  Copyright terms: Public domain W3C validator