Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nqnq0a | Unicode version |
Description: Addition of positive fractions is equal with or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.) |
Ref | Expression |
---|---|
nqnq0a | +Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqpi 7319 | . . . 4 | |
2 | nqpi 7319 | . . . 4 | |
3 | 1, 2 | anim12i 336 | . . 3 |
4 | ee4anv 1922 | . . 3 | |
5 | 3, 4 | sylibr 133 | . 2 |
6 | oveq12 5851 | . . . . . . 7 | |
7 | mulclpi 7269 | . . . . . . . . . . . . 13 | |
8 | 7 | ad2ant2rl 503 | . . . . . . . . . . . 12 |
9 | mulclpi 7269 | . . . . . . . . . . . . 13 | |
10 | 9 | ad2ant2lr 502 | . . . . . . . . . . . 12 |
11 | addpiord 7257 | . . . . . . . . . . . 12 | |
12 | 8, 10, 11 | syl2anc 409 | . . . . . . . . . . 11 |
13 | mulpiord 7258 | . . . . . . . . . . . . 13 | |
14 | 13 | ad2ant2rl 503 | . . . . . . . . . . . 12 |
15 | mulpiord 7258 | . . . . . . . . . . . . 13 | |
16 | 15 | ad2ant2lr 502 | . . . . . . . . . . . 12 |
17 | 14, 16 | oveq12d 5860 | . . . . . . . . . . 11 |
18 | 12, 17 | eqtrd 2198 | . . . . . . . . . 10 |
19 | mulpiord 7258 | . . . . . . . . . . 11 | |
20 | 19 | ad2ant2l 500 | . . . . . . . . . 10 |
21 | 18, 20 | opeq12d 3766 | . . . . . . . . 9 |
22 | 21 | eceq1d 6537 | . . . . . . . 8 ~Q0 ~Q0 |
23 | addpipqqs 7311 | . . . . . . . . 9 | |
24 | addclpi 7268 | . . . . . . . . . . 11 | |
25 | 8, 10, 24 | syl2anc 409 | . . . . . . . . . 10 |
26 | mulclpi 7269 | . . . . . . . . . . 11 | |
27 | 26 | ad2ant2l 500 | . . . . . . . . . 10 |
28 | nqnq0pi 7379 | . . . . . . . . . 10 ~Q0 | |
29 | 25, 27, 28 | syl2anc 409 | . . . . . . . . 9 ~Q0 |
30 | 23, 29 | eqtr4d 2201 | . . . . . . . 8 ~Q0 |
31 | pinn 7250 | . . . . . . . . . 10 | |
32 | 31 | anim1i 338 | . . . . . . . . 9 |
33 | pinn 7250 | . . . . . . . . . 10 | |
34 | 33 | anim1i 338 | . . . . . . . . 9 |
35 | addnnnq0 7390 | . . . . . . . . 9 ~Q0 +Q0 ~Q0 ~Q0 | |
36 | 32, 34, 35 | syl2an 287 | . . . . . . . 8 ~Q0 +Q0 ~Q0 ~Q0 |
37 | 22, 30, 36 | 3eqtr4d 2208 | . . . . . . 7 ~Q0 +Q0 ~Q0 |
38 | 6, 37 | sylan9eqr 2221 | . . . . . 6 ~Q0 +Q0 ~Q0 |
39 | nqnq0pi 7379 | . . . . . . . . . . 11 ~Q0 | |
40 | 39 | adantr 274 | . . . . . . . . . 10 ~Q0 |
41 | 40 | eqeq2d 2177 | . . . . . . . . 9 ~Q0 |
42 | nqnq0pi 7379 | . . . . . . . . . . 11 ~Q0 | |
43 | 42 | adantl 275 | . . . . . . . . . 10 ~Q0 |
44 | 43 | eqeq2d 2177 | . . . . . . . . 9 ~Q0 |
45 | 41, 44 | anbi12d 465 | . . . . . . . 8 ~Q0 ~Q0 |
46 | 45 | pm5.32i 450 | . . . . . . 7 ~Q0 ~Q0 |
47 | oveq12 5851 | . . . . . . . 8 ~Q0 ~Q0 +Q0 ~Q0 +Q0 ~Q0 | |
48 | 47 | adantl 275 | . . . . . . 7 ~Q0 ~Q0 +Q0 ~Q0 +Q0 ~Q0 |
49 | 46, 48 | sylbir 134 | . . . . . 6 +Q0 ~Q0 +Q0 ~Q0 |
50 | 38, 49 | eqtr4d 2201 | . . . . 5 +Q0 |
51 | 50 | an4s 578 | . . . 4 +Q0 |
52 | 51 | exlimivv 1884 | . . 3 +Q0 |
53 | 52 | exlimivv 1884 | . 2 +Q0 |
54 | 5, 53 | syl 14 | 1 +Q0 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 cop 3579 com 4567 (class class class)co 5842 coa 6381 comu 6382 cec 6499 cnpi 7213 cpli 7214 cmi 7215 ceq 7220 cnq 7221 cplq 7223 ~Q0 ceq0 7227 +Q0 cplq0 7230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-plpq 7285 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-enq0 7365 df-nq0 7366 df-plq0 7368 |
This theorem is referenced by: prarloclemlo 7435 prarloclemcalc 7443 |
Copyright terms: Public domain | W3C validator |