ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oafnex GIF version

Theorem oafnex 6502
Description: The characteristic function for ordinal addition is defined everywhere. (Contributed by Jim Kingdon, 27-Jul-2019.)
Assertion
Ref Expression
oafnex (𝑥 ∈ V ↦ suc 𝑥) Fn V

Proof of Theorem oafnex
StepHypRef Expression
1 vex 2766 . . 3 𝑥 ∈ V
21sucex 4535 . 2 suc 𝑥 ∈ V
3 eqid 2196 . 2 (𝑥 ∈ V ↦ suc 𝑥) = (𝑥 ∈ V ↦ suc 𝑥)
42, 3fnmpti 5386 1 (𝑥 ∈ V ↦ suc 𝑥) Fn V
Colors of variables: wff set class
Syntax hints:  Vcvv 2763  cmpt 4094  suc csuc 4400   Fn wfn 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-fun 5260  df-fn 5261
This theorem is referenced by:  fnoa  6505  oaexg  6506  oav  6512  oav2  6521  oawordi  6527
  Copyright terms: Public domain W3C validator