ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoa Unicode version

Theorem fnoa 6349
Description: Functionality and domain of ordinal addition. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
fnoa  |-  +o  Fn  ( On  X.  On )

Proof of Theorem fnoa
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oadd 6323 . 2  |-  +o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  suc  z
) ,  x ) `
 y ) )
2 vex 2692 . . 3  |-  y  e. 
_V
3 vex 2692 . . . 4  |-  x  e. 
_V
4 oafnex 6346 . . . 4  |-  ( z  e.  _V  |->  suc  z
)  Fn  _V
53, 4rdgexg 6292 . . 3  |-  ( y  e.  _V  ->  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
)  e.  _V )
62, 5ax-mp 5 . 2  |-  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
)  e.  _V
71, 6fnmpoi 6108 1  |-  +o  Fn  ( On  X.  On )
Colors of variables: wff set class
Syntax hints:    e. wcel 1481   _Vcvv 2689    |-> cmpt 3995   Oncon0 4291   suc csuc 4293    X. cxp 4543    Fn wfn 5124   ` cfv 5129   reccrdg 6272    +o coa 6316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-tr 4033  df-id 4221  df-iord 4294  df-on 4296  df-suc 4299  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-oprab 5784  df-mpo 5785  df-1st 6044  df-2nd 6045  df-recs 6208  df-irdg 6273  df-oadd 6323
This theorem is referenced by:  dmaddpi  7155
  Copyright terms: Public domain W3C validator