ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offveq Unicode version

Theorem offveq 6186
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
offveq.1  |-  ( ph  ->  A  e.  V )
offveq.2  |-  ( ph  ->  F  Fn  A )
offveq.3  |-  ( ph  ->  G  Fn  A )
offveq.4  |-  ( ph  ->  H  Fn  A )
offveq.5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
offveq.6  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
offveq.7  |-  ( (
ph  /\  x  e.  A )  ->  ( B R C )  =  ( H `  x
) )
Assertion
Ref Expression
offveq  |-  ( ph  ->  ( F  oF R G )  =  H )
Distinct variable groups:    x, A    x, F    x, G    x, H    ph, x    x, R
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem offveq
StepHypRef Expression
1 offveq.7 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( B R C )  =  ( H `  x
) )
21eqcomd 2212 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( H `  x )  =  ( B R C ) )
32ralrimiva 2580 . . 3  |-  ( ph  ->  A. x  e.  A  ( H `  x )  =  ( B R C ) )
4 offveq.1 . . . 4  |-  ( ph  ->  A  e.  V )
5 offveq.2 . . . 4  |-  ( ph  ->  F  Fn  A )
6 offveq.3 . . . 4  |-  ( ph  ->  G  Fn  A )
7 offveq.4 . . . 4  |-  ( ph  ->  H  Fn  A )
8 offveq.5 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
9 offveq.6 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
104, 5, 6, 7, 8, 9offveqb 6185 . . 3  |-  ( ph  ->  ( H  =  ( F  oF R G )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
113, 10mpbird 167 . 2  |-  ( ph  ->  H  =  ( F  oF R G ) )
1211eqcomd 2212 1  |-  ( ph  ->  ( F  oF R G )  =  H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485    Fn wfn 5271   ` cfv 5276  (class class class)co 5951    oFcof 6163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165
This theorem is referenced by:  caofid0l  6192  caofid0r  6193  caofid1  6194  caofid2  6195
  Copyright terms: Public domain W3C validator