ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offveq Unicode version

Theorem offveq 6160
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
offveq.1  |-  ( ph  ->  A  e.  V )
offveq.2  |-  ( ph  ->  F  Fn  A )
offveq.3  |-  ( ph  ->  G  Fn  A )
offveq.4  |-  ( ph  ->  H  Fn  A )
offveq.5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
offveq.6  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
offveq.7  |-  ( (
ph  /\  x  e.  A )  ->  ( B R C )  =  ( H `  x
) )
Assertion
Ref Expression
offveq  |-  ( ph  ->  ( F  oF R G )  =  H )
Distinct variable groups:    x, A    x, F    x, G    x, H    ph, x    x, R
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem offveq
StepHypRef Expression
1 offveq.7 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( B R C )  =  ( H `  x
) )
21eqcomd 2202 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( H `  x )  =  ( B R C ) )
32ralrimiva 2570 . . 3  |-  ( ph  ->  A. x  e.  A  ( H `  x )  =  ( B R C ) )
4 offveq.1 . . . 4  |-  ( ph  ->  A  e.  V )
5 offveq.2 . . . 4  |-  ( ph  ->  F  Fn  A )
6 offveq.3 . . . 4  |-  ( ph  ->  G  Fn  A )
7 offveq.4 . . . 4  |-  ( ph  ->  H  Fn  A )
8 offveq.5 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
9 offveq.6 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
104, 5, 6, 7, 8, 9offveqb 6159 . . 3  |-  ( ph  ->  ( H  =  ( F  oF R G )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
113, 10mpbird 167 . 2  |-  ( ph  ->  H  =  ( F  oF R G ) )
1211eqcomd 2202 1  |-  ( ph  ->  ( F  oF R G )  =  H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    oFcof 6137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139
This theorem is referenced by:  caofid0l  6166  caofid0r  6167  caofid1  6168  caofid2  6169
  Copyright terms: Public domain W3C validator