ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offveq Unicode version

Theorem offveq 6229
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
offveq.1  |-  ( ph  ->  A  e.  V )
offveq.2  |-  ( ph  ->  F  Fn  A )
offveq.3  |-  ( ph  ->  G  Fn  A )
offveq.4  |-  ( ph  ->  H  Fn  A )
offveq.5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
offveq.6  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
offveq.7  |-  ( (
ph  /\  x  e.  A )  ->  ( B R C )  =  ( H `  x
) )
Assertion
Ref Expression
offveq  |-  ( ph  ->  ( F  oF R G )  =  H )
Distinct variable groups:    x, A    x, F    x, G    x, H    ph, x    x, R
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem offveq
StepHypRef Expression
1 offveq.7 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( B R C )  =  ( H `  x
) )
21eqcomd 2235 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( H `  x )  =  ( B R C ) )
32ralrimiva 2603 . . 3  |-  ( ph  ->  A. x  e.  A  ( H `  x )  =  ( B R C ) )
4 offveq.1 . . . 4  |-  ( ph  ->  A  e.  V )
5 offveq.2 . . . 4  |-  ( ph  ->  F  Fn  A )
6 offveq.3 . . . 4  |-  ( ph  ->  G  Fn  A )
7 offveq.4 . . . 4  |-  ( ph  ->  H  Fn  A )
8 offveq.5 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
9 offveq.6 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
104, 5, 6, 7, 8, 9offveqb 6228 . . 3  |-  ( ph  ->  ( H  =  ( F  oF R G )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
113, 10mpbird 167 . 2  |-  ( ph  ->  H  =  ( F  oF R G ) )
1211eqcomd 2235 1  |-  ( ph  ->  ( F  oF R G )  =  H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508    Fn wfn 5309   ` cfv 5314  (class class class)co 5994    oFcof 6206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-of 6208
This theorem is referenced by:  caofid0l  6235  caofid0r  6236  caofid1  6237  caofid2  6238
  Copyright terms: Public domain W3C validator