ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offveq GIF version

Theorem offveq 6186
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
offveq.1 (𝜑𝐴𝑉)
offveq.2 (𝜑𝐹 Fn 𝐴)
offveq.3 (𝜑𝐺 Fn 𝐴)
offveq.4 (𝜑𝐻 Fn 𝐴)
offveq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
offveq.6 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
offveq.7 ((𝜑𝑥𝐴) → (𝐵𝑅𝐶) = (𝐻𝑥))
Assertion
Ref Expression
offveq (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem offveq
StepHypRef Expression
1 offveq.7 . . . . 5 ((𝜑𝑥𝐴) → (𝐵𝑅𝐶) = (𝐻𝑥))
21eqcomd 2212 . . . 4 ((𝜑𝑥𝐴) → (𝐻𝑥) = (𝐵𝑅𝐶))
32ralrimiva 2580 . . 3 (𝜑 → ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶))
4 offveq.1 . . . 4 (𝜑𝐴𝑉)
5 offveq.2 . . . 4 (𝜑𝐹 Fn 𝐴)
6 offveq.3 . . . 4 (𝜑𝐺 Fn 𝐴)
7 offveq.4 . . . 4 (𝜑𝐻 Fn 𝐴)
8 offveq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
9 offveq.6 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
104, 5, 6, 7, 8, 9offveqb 6185 . . 3 (𝜑 → (𝐻 = (𝐹𝑓 𝑅𝐺) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
113, 10mpbird 167 . 2 (𝜑𝐻 = (𝐹𝑓 𝑅𝐺))
1211eqcomd 2212 1 (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485   Fn wfn 5271  cfv 5276  (class class class)co 5951  𝑓 cof 6163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165
This theorem is referenced by:  caofid0l  6192  caofid0r  6193  caofid1  6194  caofid2  6195
  Copyright terms: Public domain W3C validator