| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > offveq | GIF version | ||
| Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| offveq.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offveq.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offveq.3 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| offveq.4 | ⊢ (𝜑 → 𝐻 Fn 𝐴) |
| offveq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| offveq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) |
| offveq.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) |
| Ref | Expression |
|---|---|
| offveq | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offveq.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) | |
| 2 | 1 | eqcomd 2212 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = (𝐵𝑅𝐶)) |
| 3 | 2 | ralrimiva 2580 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶)) |
| 4 | offveq.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | offveq.2 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 6 | offveq.3 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 7 | offveq.4 | . . . 4 ⊢ (𝜑 → 𝐻 Fn 𝐴) | |
| 8 | offveq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
| 9 | offveq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) | |
| 10 | 4, 5, 6, 7, 8, 9 | offveqb 6185 | . . 3 ⊢ (𝜑 → (𝐻 = (𝐹 ∘𝑓 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
| 11 | 3, 10 | mpbird 167 | . 2 ⊢ (𝜑 → 𝐻 = (𝐹 ∘𝑓 𝑅𝐺)) |
| 12 | 11 | eqcomd 2212 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 Fn wfn 5271 ‘cfv 5276 (class class class)co 5951 ∘𝑓 cof 6163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 |
| This theorem is referenced by: caofid0l 6192 caofid0r 6193 caofid1 6194 caofid2 6195 |
| Copyright terms: Public domain | W3C validator |