ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offveqb Unicode version

Theorem offveqb 6069
Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
offveq.1  |-  ( ph  ->  A  e.  V )
offveq.2  |-  ( ph  ->  F  Fn  A )
offveq.3  |-  ( ph  ->  G  Fn  A )
offveq.4  |-  ( ph  ->  H  Fn  A )
offveq.5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
offveq.6  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
Assertion
Ref Expression
offveqb  |-  ( ph  ->  ( H  =  ( F  oF R G )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
Distinct variable groups:    x, A    x, F    x, G    x, H    ph, x    x, R
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem offveqb
StepHypRef Expression
1 offveq.4 . . . 4  |-  ( ph  ->  H  Fn  A )
2 dffn5im 5532 . . . 4  |-  ( H  Fn  A  ->  H  =  ( x  e.  A  |->  ( H `  x ) ) )
31, 2syl 14 . . 3  |-  ( ph  ->  H  =  ( x  e.  A  |->  ( H `
 x ) ) )
4 offveq.2 . . . 4  |-  ( ph  ->  F  Fn  A )
5 offveq.3 . . . 4  |-  ( ph  ->  G  Fn  A )
6 offveq.1 . . . 4  |-  ( ph  ->  A  e.  V )
7 inidm 3331 . . . 4  |-  ( A  i^i  A )  =  A
8 offveq.5 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
9 offveq.6 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
104, 5, 6, 6, 7, 8, 9offval 6057 . . 3  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A  |->  ( B R C ) ) )
113, 10eqeq12d 2180 . 2  |-  ( ph  ->  ( H  =  ( F  oF R G )  <->  ( x  e.  A  |->  ( H `
 x ) )  =  ( x  e.  A  |->  ( B R C ) ) ) )
12 funfvex 5503 . . . . . 6  |-  ( ( Fun  H  /\  x  e.  dom  H )  -> 
( H `  x
)  e.  _V )
1312funfni 5288 . . . . 5  |-  ( ( H  Fn  A  /\  x  e.  A )  ->  ( H `  x
)  e.  _V )
141, 13sylan 281 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( H `  x )  e.  _V )
1514ralrimiva 2539 . . 3  |-  ( ph  ->  A. x  e.  A  ( H `  x )  e.  _V )
16 mpteqb 5576 . . 3  |-  ( A. x  e.  A  ( H `  x )  e.  _V  ->  ( (
x  e.  A  |->  ( H `  x ) )  =  ( x  e.  A  |->  ( B R C ) )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
1715, 16syl 14 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( H `  x ) )  =  ( x  e.  A  |->  ( B R C ) )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
1811, 17bitrd 187 1  |-  ( ph  ->  ( H  =  ( F  oF R G )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726    |-> cmpt 4043    Fn wfn 5183   ` cfv 5188  (class class class)co 5842    oFcof 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator