ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offveqb Unicode version

Theorem offveqb 6152
Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
offveq.1  |-  ( ph  ->  A  e.  V )
offveq.2  |-  ( ph  ->  F  Fn  A )
offveq.3  |-  ( ph  ->  G  Fn  A )
offveq.4  |-  ( ph  ->  H  Fn  A )
offveq.5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
offveq.6  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
Assertion
Ref Expression
offveqb  |-  ( ph  ->  ( H  =  ( F  oF R G )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
Distinct variable groups:    x, A    x, F    x, G    x, H    ph, x    x, R
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem offveqb
StepHypRef Expression
1 offveq.4 . . . 4  |-  ( ph  ->  H  Fn  A )
2 dffn5im 5603 . . . 4  |-  ( H  Fn  A  ->  H  =  ( x  e.  A  |->  ( H `  x ) ) )
31, 2syl 14 . . 3  |-  ( ph  ->  H  =  ( x  e.  A  |->  ( H `
 x ) ) )
4 offveq.2 . . . 4  |-  ( ph  ->  F  Fn  A )
5 offveq.3 . . . 4  |-  ( ph  ->  G  Fn  A )
6 offveq.1 . . . 4  |-  ( ph  ->  A  e.  V )
7 inidm 3369 . . . 4  |-  ( A  i^i  A )  =  A
8 offveq.5 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
9 offveq.6 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
104, 5, 6, 6, 7, 8, 9offval 6140 . . 3  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A  |->  ( B R C ) ) )
113, 10eqeq12d 2208 . 2  |-  ( ph  ->  ( H  =  ( F  oF R G )  <->  ( x  e.  A  |->  ( H `
 x ) )  =  ( x  e.  A  |->  ( B R C ) ) ) )
12 funfvex 5572 . . . . . 6  |-  ( ( Fun  H  /\  x  e.  dom  H )  -> 
( H `  x
)  e.  _V )
1312funfni 5355 . . . . 5  |-  ( ( H  Fn  A  /\  x  e.  A )  ->  ( H `  x
)  e.  _V )
141, 13sylan 283 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( H `  x )  e.  _V )
1514ralrimiva 2567 . . 3  |-  ( ph  ->  A. x  e.  A  ( H `  x )  e.  _V )
16 mpteqb 5649 . . 3  |-  ( A. x  e.  A  ( H `  x )  e.  _V  ->  ( (
x  e.  A  |->  ( H `  x ) )  =  ( x  e.  A  |->  ( B R C ) )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
1715, 16syl 14 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( H `  x ) )  =  ( x  e.  A  |->  ( B R C ) )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
1811, 17bitrd 188 1  |-  ( ph  ->  ( H  =  ( F  oF R G )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    |-> cmpt 4091    Fn wfn 5250   ` cfv 5255  (class class class)co 5919    oFcof 6130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator