ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ot3rdgg Unicode version

Theorem ot3rdgg 6133
Description: Extract the third member of an ordered triple. (See ot1stg 6131 comment.) (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
ot3rdgg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  <. A ,  B ,  C >. )  =  C )

Proof of Theorem ot3rdgg
StepHypRef Expression
1 df-ot 3593 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
21fveq2i 5499 . 2  |-  ( 2nd `  <. A ,  B ,  C >. )  =  ( 2nd `  <. <. A ,  B >. ,  C >. )
3 opexg 4213 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
4 op2ndg 6130 . . . 4  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  X )  ->  ( 2nd `  <. <. A ,  B >. ,  C >. )  =  C )
53, 4sylan 281 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  ( 2nd `  <. <. A ,  B >. ,  C >. )  =  C )
653impa 1189 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  <. <. A ,  B >. ,  C >. )  =  C )
72, 6eqtrid 2215 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  <. A ,  B ,  C >. )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   _Vcvv 2730   <.cop 3586   <.cotp 3587   ` cfv 5198   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-ot 3593  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-2nd 6120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator