ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ot3rdgg Unicode version

Theorem ot3rdgg 6300
Description: Extract the third member of an ordered triple. (See ot1stg 6298 comment.) (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
ot3rdgg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  <. A ,  B ,  C >. )  =  C )

Proof of Theorem ot3rdgg
StepHypRef Expression
1 df-ot 3676 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
21fveq2i 5630 . 2  |-  ( 2nd `  <. A ,  B ,  C >. )  =  ( 2nd `  <. <. A ,  B >. ,  C >. )
3 opexg 4314 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
4 op2ndg 6297 . . . 4  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  X )  ->  ( 2nd `  <. <. A ,  B >. ,  C >. )  =  C )
53, 4sylan 283 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  ( 2nd `  <. <. A ,  B >. ,  C >. )  =  C )
653impa 1218 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  <. <. A ,  B >. ,  C >. )  =  C )
72, 6eqtrid 2274 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  <. A ,  B ,  C >. )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669   <.cotp 3670   ` cfv 5318   2ndc2nd 6285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-ot 3676  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-2nd 6287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator