ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ot1stg Unicode version

Theorem ot1stg 6155
Description: Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 6155, ot2ndg 6156, ot3rdgg 6157.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
Assertion
Ref Expression
ot1stg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  A )

Proof of Theorem ot1stg
StepHypRef Expression
1 df-ot 3604 . . . . 5  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
21fveq2i 5520 . . . 4  |-  ( 1st `  <. A ,  B ,  C >. )  =  ( 1st `  <. <. A ,  B >. ,  C >. )
3 opexg 4230 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
4 op1stg 6153 . . . . . 6  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
53, 4sylan 283 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
653impa 1194 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
72, 6eqtrid 2222 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. A ,  B ,  C >. )  =  <. A ,  B >. )
87fveq2d 5521 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  ( 1st `  <. A ,  B >. )
)
9 op1stg 6153 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 1st `  <. A ,  B >. )  =  A )
1093adant3 1017 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. A ,  B >. )  =  A )
118, 10eqtrd 2210 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2739   <.cop 3597   <.cotp 3598   ` cfv 5218   1stc1st 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-ot 3604  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fv 5226  df-1st 6143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator