ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ot1stg Unicode version

Theorem ot1stg 6152
Description: Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 6152, ot2ndg 6153, ot3rdgg 6154.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
Assertion
Ref Expression
ot1stg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  A )

Proof of Theorem ot1stg
StepHypRef Expression
1 df-ot 3602 . . . . 5  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
21fveq2i 5518 . . . 4  |-  ( 1st `  <. A ,  B ,  C >. )  =  ( 1st `  <. <. A ,  B >. ,  C >. )
3 opexg 4228 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
4 op1stg 6150 . . . . . 6  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
53, 4sylan 283 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
653impa 1194 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
72, 6eqtrid 2222 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. A ,  B ,  C >. )  =  <. A ,  B >. )
87fveq2d 5519 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  ( 1st `  <. A ,  B >. )
)
9 op1stg 6150 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 1st `  <. A ,  B >. )  =  A )
1093adant3 1017 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. A ,  B >. )  =  A )
118, 10eqtrd 2210 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2737   <.cop 3595   <.cotp 3596   ` cfv 5216   1stc1st 6138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-ot 3602  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-iota 5178  df-fun 5218  df-fv 5224  df-1st 6140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator