ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ot1stg Unicode version

Theorem ot1stg 6131
Description: Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 6131, ot2ndg 6132, ot3rdgg 6133.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
Assertion
Ref Expression
ot1stg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  A )

Proof of Theorem ot1stg
StepHypRef Expression
1 df-ot 3593 . . . . 5  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
21fveq2i 5499 . . . 4  |-  ( 1st `  <. A ,  B ,  C >. )  =  ( 1st `  <. <. A ,  B >. ,  C >. )
3 opexg 4213 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
4 op1stg 6129 . . . . . 6  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
53, 4sylan 281 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
653impa 1189 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
72, 6eqtrid 2215 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. A ,  B ,  C >. )  =  <. A ,  B >. )
87fveq2d 5500 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  ( 1st `  <. A ,  B >. )
)
9 op1stg 6129 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 1st `  <. A ,  B >. )  =  A )
1093adant3 1012 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. A ,  B >. )  =  A )
118, 10eqtrd 2203 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   _Vcvv 2730   <.cop 3586   <.cotp 3587   ` cfv 5198   1stc1st 6117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-ot 3593  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-1st 6119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator