ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ot3rdgg GIF version

Theorem ot3rdgg 6290
Description: Extract the third member of an ordered triple. (See ot1stg 6288 comment.) (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
ot3rdgg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)

Proof of Theorem ot3rdgg
StepHypRef Expression
1 df-ot 3676 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
21fveq2i 5626 . 2 (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
3 opexg 4313 . . . 4 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
4 op2ndg 6287 . . . 4 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑋) → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
53, 4sylan 283 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
653impa 1218 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
72, 6eqtrid 2274 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  cop 3669  cotp 3670  cfv 5314  2nd c2nd 6275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-ot 3676  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-iota 5274  df-fun 5316  df-fv 5322  df-2nd 6277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator