ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ot3rdgg GIF version

Theorem ot3rdgg 6122
Description: Extract the third member of an ordered triple. (See ot1stg 6120 comment.) (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
ot3rdgg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)

Proof of Theorem ot3rdgg
StepHypRef Expression
1 df-ot 3586 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
21fveq2i 5489 . 2 (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
3 opexg 4206 . . . 4 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
4 op2ndg 6119 . . . 4 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑋) → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
53, 4sylan 281 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
653impa 1184 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
72, 6syl5eq 2211 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  Vcvv 2726  cop 3579  cotp 3580  cfv 5188  2nd c2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-ot 3586  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-2nd 6109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator