![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ot3rdgg | GIF version |
Description: Extract the third member of an ordered triple. (See ot1stg 6205 comment.) (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
ot3rdgg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 3628 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | 1 | fveq2i 5557 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) |
3 | opexg 4257 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) | |
4 | op2ndg 6204 | . . . 4 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑋) → (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 𝐶) | |
5 | 3, 4 | sylan 283 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 𝐶) |
6 | 5 | 3impa 1196 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 𝐶) |
7 | 2, 6 | eqtrid 2238 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3621 〈cotp 3622 ‘cfv 5254 2nd c2nd 6192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-ot 3628 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fv 5262 df-2nd 6194 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |