ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ot2ndg Unicode version

Theorem ot2ndg 6208
Description: Extract the second member of an ordered triple. (See ot1stg 6207 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
Assertion
Ref Expression
ot2ndg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  ( 1st `  <. A ,  B ,  C >. ) )  =  B )

Proof of Theorem ot2ndg
StepHypRef Expression
1 df-ot 3629 . . . . 5  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
21fveq2i 5558 . . . 4  |-  ( 1st `  <. A ,  B ,  C >. )  =  ( 1st `  <. <. A ,  B >. ,  C >. )
3 opexg 4258 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
4 op1stg 6205 . . . . . 6  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
53, 4sylan 283 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
653impa 1196 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
72, 6eqtrid 2238 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. A ,  B ,  C >. )  =  <. A ,  B >. )
87fveq2d 5559 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  ( 1st `  <. A ,  B ,  C >. ) )  =  ( 2nd `  <. A ,  B >. )
)
9 op2ndg 6206 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )
1093adant3 1019 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  <. A ,  B >. )  =  B )
118, 10eqtrd 2226 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  ( 1st `  <. A ,  B ,  C >. ) )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760   <.cop 3622   <.cotp 3623   ` cfv 5255   1stc1st 6193   2ndc2nd 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-ot 3629  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fv 5263  df-1st 6195  df-2nd 6196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator