ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ot2ndg Unicode version

Theorem ot2ndg 6154
Description: Extract the second member of an ordered triple. (See ot1stg 6153 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
Assertion
Ref Expression
ot2ndg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  ( 1st `  <. A ,  B ,  C >. ) )  =  B )

Proof of Theorem ot2ndg
StepHypRef Expression
1 df-ot 3603 . . . . 5  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
21fveq2i 5519 . . . 4  |-  ( 1st `  <. A ,  B ,  C >. )  =  ( 1st `  <. <. A ,  B >. ,  C >. )
3 opexg 4229 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
4 op1stg 6151 . . . . . 6  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
53, 4sylan 283 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
653impa 1194 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. <. A ,  B >. ,  C >. )  =  <. A ,  B >. )
72, 6eqtrid 2222 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 1st `  <. A ,  B ,  C >. )  =  <. A ,  B >. )
87fveq2d 5520 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  ( 1st `  <. A ,  B ,  C >. ) )  =  ( 2nd `  <. A ,  B >. )
)
9 op2ndg 6152 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )
1093adant3 1017 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  <. A ,  B >. )  =  B )
118, 10eqtrd 2210 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( 2nd `  ( 1st `  <. A ,  B ,  C >. ) )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2738   <.cop 3596   <.cotp 3597   ` cfv 5217   1stc1st 6139   2ndc2nd 6140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-ot 3603  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fv 5225  df-1st 6141  df-2nd 6142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator