Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qliftel | GIF version |
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
Ref | Expression |
---|---|
qliftel | ⊢ (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶𝑅𝑥 ∧ 𝐷 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
2 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
3 | qlift.3 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
4 | qlift.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) | |
5 | 1, 2, 3, 4 | qliftlem 6603 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
6 | 1, 5, 2 | fliftel 5784 | . 2 ⊢ (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 ([𝐶]𝑅 = [𝑥]𝑅 ∧ 𝐷 = 𝐴))) |
7 | 3 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑅 Er 𝑋) |
8 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
9 | 7, 8 | erth2 6570 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶𝑅𝑥 ↔ [𝐶]𝑅 = [𝑥]𝑅)) |
10 | 9 | anbi1d 465 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐶𝑅𝑥 ∧ 𝐷 = 𝐴) ↔ ([𝐶]𝑅 = [𝑥]𝑅 ∧ 𝐷 = 𝐴))) |
11 | 10 | rexbidva 2472 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 (𝐶𝑅𝑥 ∧ 𝐷 = 𝐴) ↔ ∃𝑥 ∈ 𝑋 ([𝐶]𝑅 = [𝑥]𝑅 ∧ 𝐷 = 𝐴))) |
12 | 6, 11 | bitr4d 191 | 1 ⊢ (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶𝑅𝑥 ∧ 𝐷 = 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ∃wrex 2454 Vcvv 2735 〈cop 3592 class class class wbr 3998 ↦ cmpt 4059 ran crn 4621 Er wer 6522 [cec 6523 / cqs 6524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-er 6525 df-ec 6527 df-qs 6531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |