ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftel GIF version

Theorem qliftel 6593
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
Assertion
Ref Expression
qliftel (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftel
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . . 4 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . . 4 (𝜑𝑋 ∈ V)
51, 2, 3, 4qliftlem 6591 . . 3 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
61, 5, 2fliftel 5772 . 2 (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 ([𝐶]𝑅 = [𝑥]𝑅𝐷 = 𝐴)))
73adantr 274 . . . . 5 ((𝜑𝑥𝑋) → 𝑅 Er 𝑋)
8 simpr 109 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
97, 8erth2 6558 . . . 4 ((𝜑𝑥𝑋) → (𝐶𝑅𝑥 ↔ [𝐶]𝑅 = [𝑥]𝑅))
109anbi1d 462 . . 3 ((𝜑𝑥𝑋) → ((𝐶𝑅𝑥𝐷 = 𝐴) ↔ ([𝐶]𝑅 = [𝑥]𝑅𝐷 = 𝐴)))
1110rexbidva 2467 . 2 (𝜑 → (∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴) ↔ ∃𝑥𝑋 ([𝐶]𝑅 = [𝑥]𝑅𝐷 = 𝐴)))
126, 11bitr4d 190 1 (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wrex 2449  Vcvv 2730  cop 3586   class class class wbr 3989  cmpt 4050  ran crn 4612   Er wer 6510  [cec 6511   / cqs 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-er 6513  df-ec 6515  df-qs 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator