ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftlem GIF version

Theorem qliftlem 6640
Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
Assertion
Ref Expression
qliftlem ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftlem
StepHypRef Expression
1 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
2 qlift.4 . . 3 (𝜑𝑋 ∈ V)
3 erex 6584 . . 3 (𝑅 Er 𝑋 → (𝑋 ∈ V → 𝑅 ∈ V))
41, 2, 3sylc 62 . 2 (𝜑𝑅 ∈ V)
5 ecelqsg 6615 . 2 ((𝑅 ∈ V ∧ 𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
64, 5sylan 283 1 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  Vcvv 2752  cop 3610  cmpt 4079  ran crn 4645   Er wer 6557  [cec 6558   / cqs 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4650  df-rel 4651  df-cnv 4652  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-er 6560  df-ec 6562  df-qs 6566
This theorem is referenced by:  qliftrel  6641  qliftel  6642  qliftel1  6643  qliftfun  6644  qliftf  6647  qliftval  6648
  Copyright terms: Public domain W3C validator