![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qliftlem | GIF version |
Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
Ref | Expression |
---|---|
qliftlem | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) | |
3 | erex 6584 | . . 3 ⊢ (𝑅 Er 𝑋 → (𝑋 ∈ V → 𝑅 ∈ V)) | |
4 | 1, 2, 3 | sylc 62 | . 2 ⊢ (𝜑 → 𝑅 ∈ V) |
5 | ecelqsg 6615 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) | |
6 | 4, 5 | sylan 283 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 Vcvv 2752 〈cop 3610 ↦ cmpt 4079 ran crn 4645 Er wer 6557 [cec 6558 / cqs 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-xp 4650 df-rel 4651 df-cnv 4652 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-er 6560 df-ec 6562 df-qs 6566 |
This theorem is referenced by: qliftrel 6641 qliftel 6642 qliftel1 6643 qliftfun 6644 qliftf 6647 qliftval 6648 |
Copyright terms: Public domain | W3C validator |