ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftlem GIF version

Theorem qliftlem 6370
Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
Assertion
Ref Expression
qliftlem ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftlem
StepHypRef Expression
1 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
2 qlift.4 . . 3 (𝜑𝑋 ∈ V)
3 erex 6316 . . 3 (𝑅 Er 𝑋 → (𝑋 ∈ V → 𝑅 ∈ V))
41, 2, 3sylc 61 . 2 (𝜑𝑅 ∈ V)
5 ecelqsg 6345 . 2 ((𝑅 ∈ V ∧ 𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
64, 5sylan 277 1 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  Vcvv 2619  cop 3449  cmpt 3899  ran crn 4439   Er wer 6289  [cec 6290   / cqs 6291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-xp 4444  df-rel 4445  df-cnv 4446  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-er 6292  df-ec 6294  df-qs 6298
This theorem is referenced by:  qliftrel  6371  qliftel  6372  qliftel1  6373  qliftfun  6374  qliftf  6377  qliftval  6378
  Copyright terms: Public domain W3C validator