| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qliftlem | GIF version | ||
| Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
| qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
| qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
| Ref | Expression |
|---|---|
| qliftlem | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 2 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) | |
| 3 | erex 6694 | . . 3 ⊢ (𝑅 Er 𝑋 → (𝑋 ∈ V → 𝑅 ∈ V)) | |
| 4 | 1, 2, 3 | sylc 62 | . 2 ⊢ (𝜑 → 𝑅 ∈ V) |
| 5 | ecelqsg 6725 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) | |
| 6 | 4, 5 | sylan 283 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ↦ cmpt 4144 ran crn 4717 Er wer 6667 [cec 6668 / cqs 6669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 df-cnv 4724 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-er 6670 df-ec 6672 df-qs 6676 |
| This theorem is referenced by: qliftrel 6751 qliftel 6752 qliftel1 6753 qliftfun 6754 qliftf 6757 qliftval 6758 |
| Copyright terms: Public domain | W3C validator |