![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qliftlem | GIF version |
Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
Ref | Expression |
---|---|
qliftlem | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) | |
3 | erex 6316 | . . 3 ⊢ (𝑅 Er 𝑋 → (𝑋 ∈ V → 𝑅 ∈ V)) | |
4 | 1, 2, 3 | sylc 61 | . 2 ⊢ (𝜑 → 𝑅 ∈ V) |
5 | ecelqsg 6345 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) | |
6 | 4, 5 | sylan 277 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∈ wcel 1438 Vcvv 2619 〈cop 3449 ↦ cmpt 3899 ran crn 4439 Er wer 6289 [cec 6290 / cqs 6291 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-xp 4444 df-rel 4445 df-cnv 4446 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-er 6292 df-ec 6294 df-qs 6298 |
This theorem is referenced by: qliftrel 6371 qliftel 6372 qliftel1 6373 qliftfun 6374 qliftf 6377 qliftval 6378 |
Copyright terms: Public domain | W3C validator |