| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletrd | Unicode version | ||
| Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltadd2d.1 |
|
| ltadd2d.2 |
|
| ltadd2d.3 |
|
| ltletrd.4 |
|
| ltletrd.5 |
|
| Ref | Expression |
|---|---|
| ltletrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 |
. 2
| |
| 2 | ltletrd.5 |
. 2
| |
| 3 | ltadd2d.1 |
. . 3
| |
| 4 | ltadd2d.2 |
. . 3
| |
| 5 | ltadd2d.3 |
. . 3
| |
| 6 | ltletr 8162 |
. . 3
| |
| 7 | 3, 4, 5, 6 | syl3anc 1250 |
. 2
|
| 8 | 1, 2, 7 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltwlin 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: lelttrdi 8499 lediv12a 8967 btwnapz 9503 rpgecl 9804 fznatpl1 10198 elfz1b 10212 exbtwnzlemstep 10390 ceiqle 10458 modqabs 10502 mulp1mod1 10510 seq3f1olemqsumk 10657 seqf1oglem1 10664 expgt1 10722 leexp2a 10737 bernneq3 10807 expnbnd 10808 nn0opthlem2d 10866 cvg1nlemres 11296 resqrexlemlo 11324 resqrexlemnmsq 11328 resqrexlemga 11334 abssubap0 11401 icodiamlt 11491 rpmaxcl 11534 reccn2ap 11624 divcnv 11808 cvgratnnlembern 11834 cvgratnnlemabsle 11838 fprodntrivap 11895 efcllemp 11969 sin01bnd 12068 cos01bnd 12069 sin01gt0 12073 cos12dec 12079 eirraplem 12088 dvdslelemd 12154 bitsmod 12267 bitsinv1lem 12272 dvdsbnd 12277 isprm5 12464 1arith 12690 2expltfac 12762 znnen 12769 nninfdclemp1 12821 cnopnap 15083 dedekindeulemlu 15093 suplociccreex 15096 dedekindicclemlu 15102 dedekindicc 15105 ivthinclemlopn 15108 hoverb 15120 limcimolemlt 15136 limccnp2lem 15148 coseq00topi 15307 cosordlem 15321 logdivlti 15353 gausslemma2dlem0c 15528 lgsquadlem1 15554 |
| Copyright terms: Public domain | W3C validator |