ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltletrd Unicode version

Theorem ltletrd 8317
Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.)
Hypotheses
Ref Expression
ltadd2d.1  |-  ( ph  ->  A  e.  RR )
ltadd2d.2  |-  ( ph  ->  B  e.  RR )
ltadd2d.3  |-  ( ph  ->  C  e.  RR )
ltletrd.4  |-  ( ph  ->  A  <  B )
ltletrd.5  |-  ( ph  ->  B  <_  C )
Assertion
Ref Expression
ltletrd  |-  ( ph  ->  A  <  C )

Proof of Theorem ltletrd
StepHypRef Expression
1 ltletrd.4 . 2  |-  ( ph  ->  A  <  B )
2 ltletrd.5 . 2  |-  ( ph  ->  B  <_  C )
3 ltadd2d.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 ltadd2d.2 . . 3  |-  ( ph  ->  B  e.  RR )
5 ltadd2d.3 . . 3  |-  ( ph  ->  C  e.  RR )
6 ltletr 7984 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <  C
) )
73, 4, 5, 6syl3anc 1228 . 2  |-  ( ph  ->  ( ( A  < 
B  /\  B  <_  C )  ->  A  <  C ) )
81, 2, 7mp2and 430 1  |-  ( ph  ->  A  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   class class class wbr 3981   RRcr 7748    < clt 7929    <_ cle 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-pre-ltwlin 7862
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-rab 2452  df-v 2727  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-xp 4609  df-cnv 4611  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935
This theorem is referenced by:  lelttrdi  8320  lediv12a  8785  btwnapz  9317  rpgecl  9614  fznatpl1  10007  elfz1b  10021  exbtwnzlemstep  10179  ceiqle  10244  modqabs  10288  mulp1mod1  10296  seq3f1olemqsumk  10430  expgt1  10489  leexp2a  10504  bernneq3  10573  expnbnd  10574  nn0opthlem2d  10630  cvg1nlemres  10923  resqrexlemlo  10951  resqrexlemnmsq  10955  resqrexlemga  10961  abssubap0  11028  icodiamlt  11118  rpmaxcl  11161  reccn2ap  11250  divcnv  11434  cvgratnnlembern  11460  cvgratnnlemabsle  11464  fprodntrivap  11521  efcllemp  11595  sin01bnd  11694  cos01bnd  11695  sin01gt0  11698  cos12dec  11704  eirraplem  11713  dvdslelemd  11777  dvdsbnd  11885  isprm5  12070  1arith  12293  znnen  12327  nninfdclemp1  12379  cnopnap  13194  dedekindeulemlu  13199  suplociccreex  13202  dedekindicclemlu  13208  dedekindicc  13211  ivthinclemlopn  13214  limcimolemlt  13233  limccnp2lem  13245  coseq00topi  13356  cosordlem  13370  logdivlti  13402
  Copyright terms: Public domain W3C validator