Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltletrd | Unicode version |
Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltadd2d.1 | |
ltadd2d.2 | |
ltadd2d.3 | |
ltletrd.4 | |
ltletrd.5 |
Ref | Expression |
---|---|
ltletrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 | . 2 | |
2 | ltletrd.5 | . 2 | |
3 | ltadd2d.1 | . . 3 | |
4 | ltadd2d.2 | . . 3 | |
5 | ltadd2d.3 | . . 3 | |
6 | ltletr 7984 | . . 3 | |
7 | 3, 4, 5, 6 | syl3anc 1228 | . 2 |
8 | 1, 2, 7 | mp2and 430 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 class class class wbr 3981 cr 7748 clt 7929 cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-pre-ltwlin 7862 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 |
This theorem is referenced by: lelttrdi 8320 lediv12a 8785 btwnapz 9317 rpgecl 9614 fznatpl1 10007 elfz1b 10021 exbtwnzlemstep 10179 ceiqle 10244 modqabs 10288 mulp1mod1 10296 seq3f1olemqsumk 10430 expgt1 10489 leexp2a 10504 bernneq3 10573 expnbnd 10574 nn0opthlem2d 10630 cvg1nlemres 10923 resqrexlemlo 10951 resqrexlemnmsq 10955 resqrexlemga 10961 abssubap0 11028 icodiamlt 11118 rpmaxcl 11161 reccn2ap 11250 divcnv 11434 cvgratnnlembern 11460 cvgratnnlemabsle 11464 fprodntrivap 11521 efcllemp 11595 sin01bnd 11694 cos01bnd 11695 sin01gt0 11698 cos12dec 11704 eirraplem 11713 dvdslelemd 11777 dvdsbnd 11885 isprm5 12070 1arith 12293 znnen 12327 nninfdclemp1 12379 cnopnap 13194 dedekindeulemlu 13199 suplociccreex 13202 dedekindicclemlu 13208 dedekindicc 13211 ivthinclemlopn 13214 limcimolemlt 13233 limccnp2lem 13245 coseq00topi 13356 cosordlem 13370 logdivlti 13402 |
Copyright terms: Public domain | W3C validator |