| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletrd | Unicode version | ||
| Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltadd2d.1 |
|
| ltadd2d.2 |
|
| ltadd2d.3 |
|
| ltletrd.4 |
|
| ltletrd.5 |
|
| Ref | Expression |
|---|---|
| ltletrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 |
. 2
| |
| 2 | ltletrd.5 |
. 2
| |
| 3 | ltadd2d.1 |
. . 3
| |
| 4 | ltadd2d.2 |
. . 3
| |
| 5 | ltadd2d.3 |
. . 3
| |
| 6 | ltletr 8164 |
. . 3
| |
| 7 | 3, 4, 5, 6 | syl3anc 1250 |
. 2
|
| 8 | 1, 2, 7 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltwlin 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 |
| This theorem is referenced by: lelttrdi 8501 lediv12a 8969 btwnapz 9505 rpgecl 9806 fznatpl1 10200 elfz1b 10214 exbtwnzlemstep 10392 ceiqle 10460 modqabs 10504 mulp1mod1 10512 seq3f1olemqsumk 10659 seqf1oglem1 10666 expgt1 10724 leexp2a 10739 bernneq3 10809 expnbnd 10810 nn0opthlem2d 10868 cvg1nlemres 11329 resqrexlemlo 11357 resqrexlemnmsq 11361 resqrexlemga 11367 abssubap0 11434 icodiamlt 11524 rpmaxcl 11567 reccn2ap 11657 divcnv 11841 cvgratnnlembern 11867 cvgratnnlemabsle 11871 fprodntrivap 11928 efcllemp 12002 sin01bnd 12101 cos01bnd 12102 sin01gt0 12106 cos12dec 12112 eirraplem 12121 dvdslelemd 12187 bitsmod 12300 bitsinv1lem 12305 dvdsbnd 12310 isprm5 12497 1arith 12723 2expltfac 12795 znnen 12802 nninfdclemp1 12854 cnopnap 15116 dedekindeulemlu 15126 suplociccreex 15129 dedekindicclemlu 15135 dedekindicc 15138 ivthinclemlopn 15141 hoverb 15153 limcimolemlt 15169 limccnp2lem 15181 coseq00topi 15340 cosordlem 15354 logdivlti 15386 gausslemma2dlem0c 15561 lgsquadlem1 15587 |
| Copyright terms: Public domain | W3C validator |