![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltletrd | Unicode version |
Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltadd2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltadd2d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltadd2d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltletrd.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltletrd.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ltletrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ltletrd.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ltadd2d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | ltadd2d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | ltadd2d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | ltletr 8111 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 3, 4, 5, 6 | syl3anc 1249 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 2, 7 | mp2and 433 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltwlin 7987 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 |
This theorem is referenced by: lelttrdi 8447 lediv12a 8915 btwnapz 9450 rpgecl 9751 fznatpl1 10145 elfz1b 10159 exbtwnzlemstep 10319 ceiqle 10387 modqabs 10431 mulp1mod1 10439 seq3f1olemqsumk 10586 seqf1oglem1 10593 expgt1 10651 leexp2a 10666 bernneq3 10736 expnbnd 10737 nn0opthlem2d 10795 cvg1nlemres 11132 resqrexlemlo 11160 resqrexlemnmsq 11164 resqrexlemga 11170 abssubap0 11237 icodiamlt 11327 rpmaxcl 11370 reccn2ap 11459 divcnv 11643 cvgratnnlembern 11669 cvgratnnlemabsle 11673 fprodntrivap 11730 efcllemp 11804 sin01bnd 11903 cos01bnd 11904 sin01gt0 11908 cos12dec 11914 eirraplem 11923 dvdslelemd 11988 dvdsbnd 12096 isprm5 12283 1arith 12508 znnen 12558 nninfdclemp1 12610 cnopnap 14790 dedekindeulemlu 14800 suplociccreex 14803 dedekindicclemlu 14809 dedekindicc 14812 ivthinclemlopn 14815 hoverb 14827 limcimolemlt 14843 limccnp2lem 14855 coseq00topi 15011 cosordlem 15025 logdivlti 15057 gausslemma2dlem0c 15208 lgsquadlem1 15234 |
Copyright terms: Public domain | W3C validator |