| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletrd | Unicode version | ||
| Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltadd2d.1 |
|
| ltadd2d.2 |
|
| ltadd2d.3 |
|
| ltletrd.4 |
|
| ltletrd.5 |
|
| Ref | Expression |
|---|---|
| ltletrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 |
. 2
| |
| 2 | ltletrd.5 |
. 2
| |
| 3 | ltadd2d.1 |
. . 3
| |
| 4 | ltadd2d.2 |
. . 3
| |
| 5 | ltadd2d.3 |
. . 3
| |
| 6 | ltletr 8236 |
. . 3
| |
| 7 | 3, 4, 5, 6 | syl3anc 1271 |
. 2
|
| 8 | 1, 2, 7 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltwlin 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: lelttrdi 8573 lediv12a 9041 btwnapz 9577 rpgecl 9878 fznatpl1 10272 elfz1b 10286 exbtwnzlemstep 10467 ceiqle 10535 modqabs 10579 mulp1mod1 10587 seq3f1olemqsumk 10734 seqf1oglem1 10741 expgt1 10799 leexp2a 10814 bernneq3 10884 expnbnd 10885 nn0opthlem2d 10943 cvg1nlemres 11496 resqrexlemlo 11524 resqrexlemnmsq 11528 resqrexlemga 11534 abssubap0 11601 icodiamlt 11691 rpmaxcl 11734 reccn2ap 11824 divcnv 12008 cvgratnnlembern 12034 cvgratnnlemabsle 12038 fprodntrivap 12095 efcllemp 12169 sin01bnd 12268 cos01bnd 12269 sin01gt0 12273 cos12dec 12279 eirraplem 12288 dvdslelemd 12354 bitsmod 12467 bitsinv1lem 12472 dvdsbnd 12477 isprm5 12664 1arith 12890 2expltfac 12962 znnen 12969 nninfdclemp1 13021 cnopnap 15285 dedekindeulemlu 15295 suplociccreex 15298 dedekindicclemlu 15304 dedekindicc 15307 ivthinclemlopn 15310 hoverb 15322 limcimolemlt 15338 limccnp2lem 15350 coseq00topi 15509 cosordlem 15523 logdivlti 15555 gausslemma2dlem0c 15730 lgsquadlem1 15756 |
| Copyright terms: Public domain | W3C validator |