| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletrd | Unicode version | ||
| Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltadd2d.1 |
|
| ltadd2d.2 |
|
| ltadd2d.3 |
|
| ltletrd.4 |
|
| ltletrd.5 |
|
| Ref | Expression |
|---|---|
| ltletrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 |
. 2
| |
| 2 | ltletrd.5 |
. 2
| |
| 3 | ltadd2d.1 |
. . 3
| |
| 4 | ltadd2d.2 |
. . 3
| |
| 5 | ltadd2d.3 |
. . 3
| |
| 6 | ltletr 8133 |
. . 3
| |
| 7 | 3, 4, 5, 6 | syl3anc 1249 |
. 2
|
| 8 | 1, 2, 7 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltwlin 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 |
| This theorem is referenced by: lelttrdi 8470 lediv12a 8938 btwnapz 9473 rpgecl 9774 fznatpl1 10168 elfz1b 10182 exbtwnzlemstep 10354 ceiqle 10422 modqabs 10466 mulp1mod1 10474 seq3f1olemqsumk 10621 seqf1oglem1 10628 expgt1 10686 leexp2a 10701 bernneq3 10771 expnbnd 10772 nn0opthlem2d 10830 cvg1nlemres 11167 resqrexlemlo 11195 resqrexlemnmsq 11199 resqrexlemga 11205 abssubap0 11272 icodiamlt 11362 rpmaxcl 11405 reccn2ap 11495 divcnv 11679 cvgratnnlembern 11705 cvgratnnlemabsle 11709 fprodntrivap 11766 efcllemp 11840 sin01bnd 11939 cos01bnd 11940 sin01gt0 11944 cos12dec 11950 eirraplem 11959 dvdslelemd 12025 bitsmod 12138 bitsinv1lem 12143 dvdsbnd 12148 isprm5 12335 1arith 12561 2expltfac 12633 znnen 12640 nninfdclemp1 12692 cnopnap 14931 dedekindeulemlu 14941 suplociccreex 14944 dedekindicclemlu 14950 dedekindicc 14953 ivthinclemlopn 14956 hoverb 14968 limcimolemlt 14984 limccnp2lem 14996 coseq00topi 15155 cosordlem 15169 logdivlti 15201 gausslemma2dlem0c 15376 lgsquadlem1 15402 |
| Copyright terms: Public domain | W3C validator |