| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletrd | Unicode version | ||
| Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltadd2d.1 |
|
| ltadd2d.2 |
|
| ltadd2d.3 |
|
| ltletrd.4 |
|
| ltletrd.5 |
|
| Ref | Expression |
|---|---|
| ltletrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 |
. 2
| |
| 2 | ltletrd.5 |
. 2
| |
| 3 | ltadd2d.1 |
. . 3
| |
| 4 | ltadd2d.2 |
. . 3
| |
| 5 | ltadd2d.3 |
. . 3
| |
| 6 | ltletr 8197 |
. . 3
| |
| 7 | 3, 4, 5, 6 | syl3anc 1250 |
. 2
|
| 8 | 1, 2, 7 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltwlin 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: lelttrdi 8534 lediv12a 9002 btwnapz 9538 rpgecl 9839 fznatpl1 10233 elfz1b 10247 exbtwnzlemstep 10427 ceiqle 10495 modqabs 10539 mulp1mod1 10547 seq3f1olemqsumk 10694 seqf1oglem1 10701 expgt1 10759 leexp2a 10774 bernneq3 10844 expnbnd 10845 nn0opthlem2d 10903 cvg1nlemres 11411 resqrexlemlo 11439 resqrexlemnmsq 11443 resqrexlemga 11449 abssubap0 11516 icodiamlt 11606 rpmaxcl 11649 reccn2ap 11739 divcnv 11923 cvgratnnlembern 11949 cvgratnnlemabsle 11953 fprodntrivap 12010 efcllemp 12084 sin01bnd 12183 cos01bnd 12184 sin01gt0 12188 cos12dec 12194 eirraplem 12203 dvdslelemd 12269 bitsmod 12382 bitsinv1lem 12387 dvdsbnd 12392 isprm5 12579 1arith 12805 2expltfac 12877 znnen 12884 nninfdclemp1 12936 cnopnap 15198 dedekindeulemlu 15208 suplociccreex 15211 dedekindicclemlu 15217 dedekindicc 15220 ivthinclemlopn 15223 hoverb 15235 limcimolemlt 15251 limccnp2lem 15263 coseq00topi 15422 cosordlem 15436 logdivlti 15468 gausslemma2dlem0c 15643 lgsquadlem1 15669 |
| Copyright terms: Public domain | W3C validator |