ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul2sq Unicode version

Theorem mul2sq 13746
Description: Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
Assertion
Ref Expression
mul2sq  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  x.  B
)  e.  S )

Proof of Theorem mul2sq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
212sqlem1 13744 . 2  |-  ( A  e.  S  <->  E. x  e.  ZZ[_i]  A  =  ( ( abs `  x ) ^
2 ) )
312sqlem1 13744 . 2  |-  ( B  e.  S  <->  E. y  e.  ZZ[_i]  B  =  ( ( abs `  y ) ^
2 ) )
4 reeanv 2639 . . 3  |-  ( E. x  e.  ZZ[_i]  E. y  e.  ZZ[_i] 
( A  =  ( ( abs `  x
) ^ 2 )  /\  B  =  ( ( abs `  y
) ^ 2 ) )  <->  ( E. x  e.  ZZ[_i]  A  =  ( ( abs `  x ) ^
2 )  /\  E. y  e.  ZZ[_i]  B  =  ( ( abs `  y
) ^ 2 ) ) )
5 gzmulcl 12330 . . . . . . 7  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( x  x.  y )  e.  ZZ[_i] )
6 gzcn 12324 . . . . . . . . . 10  |-  ( x  e.  ZZ[_i]  ->  x  e.  CC )
7 gzcn 12324 . . . . . . . . . 10  |-  ( y  e.  ZZ[_i]  ->  y  e.  CC )
8 absmul 11033 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  x.  y ) )  =  ( ( abs `  x )  x.  ( abs `  y
) ) )
96, 7, 8syl2an 287 . . . . . . . . 9  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( abs `  ( x  x.  y
) )  =  ( ( abs `  x
)  x.  ( abs `  y ) ) )
109oveq1d 5868 . . . . . . . 8  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( ( abs `  ( x  x.  y ) ) ^
2 )  =  ( ( ( abs `  x
)  x.  ( abs `  y ) ) ^
2 ) )
116abscld 11145 . . . . . . . . . 10  |-  ( x  e.  ZZ[_i]  ->  ( abs `  x )  e.  RR )
1211recnd 7948 . . . . . . . . 9  |-  ( x  e.  ZZ[_i]  ->  ( abs `  x )  e.  CC )
137abscld 11145 . . . . . . . . . 10  |-  ( y  e.  ZZ[_i]  ->  ( abs `  y )  e.  RR )
1413recnd 7948 . . . . . . . . 9  |-  ( y  e.  ZZ[_i]  ->  ( abs `  y )  e.  CC )
15 sqmul 10538 . . . . . . . . 9  |-  ( ( ( abs `  x
)  e.  CC  /\  ( abs `  y )  e.  CC )  -> 
( ( ( abs `  x )  x.  ( abs `  y ) ) ^ 2 )  =  ( ( ( abs `  x ) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) ) )
1612, 14, 15syl2an 287 . . . . . . . 8  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( (
( abs `  x
)  x.  ( abs `  y ) ) ^
2 )  =  ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) ) )
1710, 16eqtr2d 2204 . . . . . . 7  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( (
( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  (
x  x.  y ) ) ^ 2 ) )
18 fveq2 5496 . . . . . . . . 9  |-  ( z  =  ( x  x.  y )  ->  ( abs `  z )  =  ( abs `  (
x  x.  y ) ) )
1918oveq1d 5868 . . . . . . . 8  |-  ( z  =  ( x  x.  y )  ->  (
( abs `  z
) ^ 2 )  =  ( ( abs `  ( x  x.  y
) ) ^ 2 ) )
2019rspceeqv 2852 . . . . . . 7  |-  ( ( ( x  x.  y
)  e.  ZZ[_i]  /\  (
( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  (
x  x.  y ) ) ^ 2 ) )  ->  E. z  e.  ZZ[_i] 
( ( ( abs `  x ) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
215, 17, 20syl2anc 409 . . . . . 6  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  E. z  e.  ZZ[_i] 
( ( ( abs `  x ) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
2212sqlem1 13744 . . . . . 6  |-  ( ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  e.  S  <->  E. z  e.  ZZ[_i]  ( (
( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  z
) ^ 2 ) )
2321, 22sylibr 133 . . . . 5  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( (
( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  e.  S
)
24 oveq12 5862 . . . . . 6  |-  ( ( A  =  ( ( abs `  x ) ^ 2 )  /\  B  =  ( ( abs `  y ) ^
2 ) )  -> 
( A  x.  B
)  =  ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) ) )
2524eleq1d 2239 . . . . 5  |-  ( ( A  =  ( ( abs `  x ) ^ 2 )  /\  B  =  ( ( abs `  y ) ^
2 ) )  -> 
( ( A  x.  B )  e.  S  <->  ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  e.  S
) )
2623, 25syl5ibrcom 156 . . . 4  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( ( A  =  ( ( abs `  x ) ^
2 )  /\  B  =  ( ( abs `  y ) ^ 2 ) )  ->  ( A  x.  B )  e.  S ) )
2726rexlimivv 2593 . . 3  |-  ( E. x  e.  ZZ[_i]  E. y  e.  ZZ[_i] 
( A  =  ( ( abs `  x
) ^ 2 )  /\  B  =  ( ( abs `  y
) ^ 2 ) )  ->  ( A  x.  B )  e.  S
)
284, 27sylbir 134 . 2  |-  ( ( E. x  e.  ZZ[_i]  A  =  ( ( abs `  x ) ^ 2 )  /\  E. y  e.  ZZ[_i]  B  =  ( ( abs `  y ) ^
2 ) )  -> 
( A  x.  B
)  e.  S )
292, 3, 28syl2anb 289 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  x.  B
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   E.wrex 2449    |-> cmpt 4050   ran crn 4612   ` cfv 5198  (class class class)co 5853   CCcc 7772    x. cmul 7779   2c2 8929   ^cexp 10475   abscabs 10961   ZZ[_i]cgz 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-gz 12322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator