ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul2sq Unicode version

Theorem mul2sq 15708
Description: Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
Assertion
Ref Expression
mul2sq  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  x.  B
)  e.  S )

Proof of Theorem mul2sq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
212sqlem1 15706 . 2  |-  ( A  e.  S  <->  E. x  e.  ZZ[_i]  A  =  ( ( abs `  x ) ^
2 ) )
312sqlem1 15706 . 2  |-  ( B  e.  S  <->  E. y  e.  ZZ[_i]  B  =  ( ( abs `  y ) ^
2 ) )
4 reeanv 2678 . . 3  |-  ( E. x  e.  ZZ[_i]  E. y  e.  ZZ[_i] 
( A  =  ( ( abs `  x
) ^ 2 )  /\  B  =  ( ( abs `  y
) ^ 2 ) )  <->  ( E. x  e.  ZZ[_i]  A  =  ( ( abs `  x ) ^
2 )  /\  E. y  e.  ZZ[_i]  B  =  ( ( abs `  y
) ^ 2 ) ) )
5 gzmulcl 12816 . . . . . . 7  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( x  x.  y )  e.  ZZ[_i] )
6 gzcn 12810 . . . . . . . . . 10  |-  ( x  e.  ZZ[_i]  ->  x  e.  CC )
7 gzcn 12810 . . . . . . . . . 10  |-  ( y  e.  ZZ[_i]  ->  y  e.  CC )
8 absmul 11495 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  x.  y ) )  =  ( ( abs `  x )  x.  ( abs `  y
) ) )
96, 7, 8syl2an 289 . . . . . . . . 9  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( abs `  ( x  x.  y
) )  =  ( ( abs `  x
)  x.  ( abs `  y ) ) )
109oveq1d 5982 . . . . . . . 8  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( ( abs `  ( x  x.  y ) ) ^
2 )  =  ( ( ( abs `  x
)  x.  ( abs `  y ) ) ^
2 ) )
116abscld 11607 . . . . . . . . . 10  |-  ( x  e.  ZZ[_i]  ->  ( abs `  x )  e.  RR )
1211recnd 8136 . . . . . . . . 9  |-  ( x  e.  ZZ[_i]  ->  ( abs `  x )  e.  CC )
137abscld 11607 . . . . . . . . . 10  |-  ( y  e.  ZZ[_i]  ->  ( abs `  y )  e.  RR )
1413recnd 8136 . . . . . . . . 9  |-  ( y  e.  ZZ[_i]  ->  ( abs `  y )  e.  CC )
15 sqmul 10783 . . . . . . . . 9  |-  ( ( ( abs `  x
)  e.  CC  /\  ( abs `  y )  e.  CC )  -> 
( ( ( abs `  x )  x.  ( abs `  y ) ) ^ 2 )  =  ( ( ( abs `  x ) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) ) )
1612, 14, 15syl2an 289 . . . . . . . 8  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( (
( abs `  x
)  x.  ( abs `  y ) ) ^
2 )  =  ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) ) )
1710, 16eqtr2d 2241 . . . . . . 7  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( (
( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  (
x  x.  y ) ) ^ 2 ) )
18 fveq2 5599 . . . . . . . . 9  |-  ( z  =  ( x  x.  y )  ->  ( abs `  z )  =  ( abs `  (
x  x.  y ) ) )
1918oveq1d 5982 . . . . . . . 8  |-  ( z  =  ( x  x.  y )  ->  (
( abs `  z
) ^ 2 )  =  ( ( abs `  ( x  x.  y
) ) ^ 2 ) )
2019rspceeqv 2902 . . . . . . 7  |-  ( ( ( x  x.  y
)  e.  ZZ[_i]  /\  (
( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  (
x  x.  y ) ) ^ 2 ) )  ->  E. z  e.  ZZ[_i] 
( ( ( abs `  x ) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
215, 17, 20syl2anc 411 . . . . . 6  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  E. z  e.  ZZ[_i] 
( ( ( abs `  x ) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
2212sqlem1 15706 . . . . . 6  |-  ( ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  e.  S  <->  E. z  e.  ZZ[_i]  ( (
( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  z
) ^ 2 ) )
2321, 22sylibr 134 . . . . 5  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( (
( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  e.  S
)
24 oveq12 5976 . . . . . 6  |-  ( ( A  =  ( ( abs `  x ) ^ 2 )  /\  B  =  ( ( abs `  y ) ^
2 ) )  -> 
( A  x.  B
)  =  ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) ) )
2524eleq1d 2276 . . . . 5  |-  ( ( A  =  ( ( abs `  x ) ^ 2 )  /\  B  =  ( ( abs `  y ) ^
2 ) )  -> 
( ( A  x.  B )  e.  S  <->  ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  e.  S
) )
2623, 25syl5ibrcom 157 . . . 4  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( ( A  =  ( ( abs `  x ) ^
2 )  /\  B  =  ( ( abs `  y ) ^ 2 ) )  ->  ( A  x.  B )  e.  S ) )
2726rexlimivv 2631 . . 3  |-  ( E. x  e.  ZZ[_i]  E. y  e.  ZZ[_i] 
( A  =  ( ( abs `  x
) ^ 2 )  /\  B  =  ( ( abs `  y
) ^ 2 ) )  ->  ( A  x.  B )  e.  S
)
284, 27sylbir 135 . 2  |-  ( ( E. x  e.  ZZ[_i]  A  =  ( ( abs `  x ) ^ 2 )  /\  E. y  e.  ZZ[_i]  B  =  ( ( abs `  y ) ^
2 ) )  -> 
( A  x.  B
)  e.  S )
292, 3, 28syl2anb 291 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  x.  B
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   E.wrex 2487    |-> cmpt 4121   ran crn 4694   ` cfv 5290  (class class class)co 5967   CCcc 7958    x. cmul 7965   2c2 9122   ^cexp 10720   abscabs 11423   ZZ[_i]cgz 12807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-gz 12808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator