ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul2sq Unicode version

Theorem mul2sq 15273
Description: Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
Assertion
Ref Expression
mul2sq  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  x.  B
)  e.  S )

Proof of Theorem mul2sq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
212sqlem1 15271 . 2  |-  ( A  e.  S  <->  E. x  e.  ZZ[_i]  A  =  ( ( abs `  x ) ^
2 ) )
312sqlem1 15271 . 2  |-  ( B  e.  S  <->  E. y  e.  ZZ[_i]  B  =  ( ( abs `  y ) ^
2 ) )
4 reeanv 2664 . . 3  |-  ( E. x  e.  ZZ[_i]  E. y  e.  ZZ[_i] 
( A  =  ( ( abs `  x
) ^ 2 )  /\  B  =  ( ( abs `  y
) ^ 2 ) )  <->  ( E. x  e.  ZZ[_i]  A  =  ( ( abs `  x ) ^
2 )  /\  E. y  e.  ZZ[_i]  B  =  ( ( abs `  y
) ^ 2 ) ) )
5 gzmulcl 12519 . . . . . . 7  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( x  x.  y )  e.  ZZ[_i] )
6 gzcn 12513 . . . . . . . . . 10  |-  ( x  e.  ZZ[_i]  ->  x  e.  CC )
7 gzcn 12513 . . . . . . . . . 10  |-  ( y  e.  ZZ[_i]  ->  y  e.  CC )
8 absmul 11216 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  x.  y ) )  =  ( ( abs `  x )  x.  ( abs `  y
) ) )
96, 7, 8syl2an 289 . . . . . . . . 9  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( abs `  ( x  x.  y
) )  =  ( ( abs `  x
)  x.  ( abs `  y ) ) )
109oveq1d 5934 . . . . . . . 8  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( ( abs `  ( x  x.  y ) ) ^
2 )  =  ( ( ( abs `  x
)  x.  ( abs `  y ) ) ^
2 ) )
116abscld 11328 . . . . . . . . . 10  |-  ( x  e.  ZZ[_i]  ->  ( abs `  x )  e.  RR )
1211recnd 8050 . . . . . . . . 9  |-  ( x  e.  ZZ[_i]  ->  ( abs `  x )  e.  CC )
137abscld 11328 . . . . . . . . . 10  |-  ( y  e.  ZZ[_i]  ->  ( abs `  y )  e.  RR )
1413recnd 8050 . . . . . . . . 9  |-  ( y  e.  ZZ[_i]  ->  ( abs `  y )  e.  CC )
15 sqmul 10675 . . . . . . . . 9  |-  ( ( ( abs `  x
)  e.  CC  /\  ( abs `  y )  e.  CC )  -> 
( ( ( abs `  x )  x.  ( abs `  y ) ) ^ 2 )  =  ( ( ( abs `  x ) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) ) )
1612, 14, 15syl2an 289 . . . . . . . 8  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( (
( abs `  x
)  x.  ( abs `  y ) ) ^
2 )  =  ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) ) )
1710, 16eqtr2d 2227 . . . . . . 7  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( (
( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  (
x  x.  y ) ) ^ 2 ) )
18 fveq2 5555 . . . . . . . . 9  |-  ( z  =  ( x  x.  y )  ->  ( abs `  z )  =  ( abs `  (
x  x.  y ) ) )
1918oveq1d 5934 . . . . . . . 8  |-  ( z  =  ( x  x.  y )  ->  (
( abs `  z
) ^ 2 )  =  ( ( abs `  ( x  x.  y
) ) ^ 2 ) )
2019rspceeqv 2883 . . . . . . 7  |-  ( ( ( x  x.  y
)  e.  ZZ[_i]  /\  (
( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  (
x  x.  y ) ) ^ 2 ) )  ->  E. z  e.  ZZ[_i] 
( ( ( abs `  x ) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
215, 17, 20syl2anc 411 . . . . . 6  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  E. z  e.  ZZ[_i] 
( ( ( abs `  x ) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
2212sqlem1 15271 . . . . . 6  |-  ( ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  e.  S  <->  E. z  e.  ZZ[_i]  ( (
( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  =  ( ( abs `  z
) ^ 2 ) )
2321, 22sylibr 134 . . . . 5  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( (
( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  e.  S
)
24 oveq12 5928 . . . . . 6  |-  ( ( A  =  ( ( abs `  x ) ^ 2 )  /\  B  =  ( ( abs `  y ) ^
2 ) )  -> 
( A  x.  B
)  =  ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) ) )
2524eleq1d 2262 . . . . 5  |-  ( ( A  =  ( ( abs `  x ) ^ 2 )  /\  B  =  ( ( abs `  y ) ^
2 ) )  -> 
( ( A  x.  B )  e.  S  <->  ( ( ( abs `  x
) ^ 2 )  x.  ( ( abs `  y ) ^ 2 ) )  e.  S
) )
2623, 25syl5ibrcom 157 . . . 4  |-  ( ( x  e.  ZZ[_i]  /\  y  e.  ZZ[_i]
)  ->  ( ( A  =  ( ( abs `  x ) ^
2 )  /\  B  =  ( ( abs `  y ) ^ 2 ) )  ->  ( A  x.  B )  e.  S ) )
2726rexlimivv 2617 . . 3  |-  ( E. x  e.  ZZ[_i]  E. y  e.  ZZ[_i] 
( A  =  ( ( abs `  x
) ^ 2 )  /\  B  =  ( ( abs `  y
) ^ 2 ) )  ->  ( A  x.  B )  e.  S
)
284, 27sylbir 135 . 2  |-  ( ( E. x  e.  ZZ[_i]  A  =  ( ( abs `  x ) ^ 2 )  /\  E. y  e.  ZZ[_i]  B  =  ( ( abs `  y ) ^
2 ) )  -> 
( A  x.  B
)  e.  S )
292, 3, 28syl2anb 291 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  x.  B
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473    |-> cmpt 4091   ran crn 4661   ` cfv 5255  (class class class)co 5919   CCcc 7872    x. cmul 7879   2c2 9035   ^cexp 10612   abscabs 11144   ZZ[_i]cgz 12510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-gz 12511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator