ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenum Unicode version

Theorem fidcenum 6810
Description: A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as  E. n  e. 
om E. f f : n -onto-> A is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.)
Assertion
Ref Expression
fidcenum  |-  ( A  e.  Fin  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e. 
om  E. f  f : n -onto-> A ) )
Distinct variable group:    A, f, n, x, y

Proof of Theorem fidcenum
StepHypRef Expression
1 fidcenumlemim 6806 . 2  |-  ( A  e.  Fin  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A ) )
2 simpll 501 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
3 simpr 109 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  f :
n -onto-> A )
4 simplr 502 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  n  e.  om )
52, 3, 4fidcenumlemr 6809 . . . . . 6  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  A  e.  Fin )
65ex 114 . . . . 5  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  ->  (
f : n -onto-> A  ->  A  e.  Fin ) )
76exlimdv 1773 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  ->  ( E. f  f :
n -onto-> A  ->  A  e. 
Fin ) )
87rexlimdva 2524 . . 3  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  ( E. n  e.  om  E. f  f : n -onto-> A  ->  A  e.  Fin )
)
98imp 123 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A )  ->  A  e.  Fin )
101, 9impbii 125 1  |-  ( A  e.  Fin  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e. 
om  E. f  f : n -onto-> A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104  DECID wdc 802   E.wex 1451    e. wcel 1463   A.wral 2391   E.wrex 2392   omcom 4472   -onto->wfo 5089   Fincfn 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-1o 6279  df-er 6395  df-en 6601  df-fin 6603
This theorem is referenced by:  finct  6967  ctinf  11849
  Copyright terms: Public domain W3C validator