ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenum Unicode version

Theorem fidcenum 7070
Description: A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as  E. n  e. 
om E. f f : n -onto-> A is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.)
Assertion
Ref Expression
fidcenum  |-  ( A  e.  Fin  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e. 
om  E. f  f : n -onto-> A ) )
Distinct variable group:    A, f, n, x, y

Proof of Theorem fidcenum
StepHypRef Expression
1 fidcenumlemim 7066 . 2  |-  ( A  e.  Fin  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A ) )
2 simpll 527 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
3 simpr 110 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  f :
n -onto-> A )
4 simplr 528 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  n  e.  om )
52, 3, 4fidcenumlemr 7069 . . . . . 6  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  A  e.  Fin )
65ex 115 . . . . 5  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  ->  (
f : n -onto-> A  ->  A  e.  Fin ) )
76exlimdv 1843 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  ->  ( E. f  f :
n -onto-> A  ->  A  e. 
Fin ) )
87rexlimdva 2624 . . 3  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  ( E. n  e.  om  E. f  f : n -onto-> A  ->  A  e.  Fin )
)
98imp 124 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A )  ->  A  e.  Fin )
101, 9impbii 126 1  |-  ( A  e.  Fin  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e. 
om  E. f  f : n -onto-> A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 836   E.wex 1516    e. wcel 2177   A.wral 2485   E.wrex 2486   omcom 4643   -onto->wfo 5275   Fincfn 6837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-1o 6512  df-er 6630  df-en 6838  df-fin 6840
This theorem is referenced by:  finct  7230  ctinf  12851
  Copyright terms: Public domain W3C validator