ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenum Unicode version

Theorem fidcenum 6921
Description: A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as  E. n  e. 
om E. f f : n -onto-> A is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.)
Assertion
Ref Expression
fidcenum  |-  ( A  e.  Fin  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e. 
om  E. f  f : n -onto-> A ) )
Distinct variable group:    A, f, n, x, y

Proof of Theorem fidcenum
StepHypRef Expression
1 fidcenumlemim 6917 . 2  |-  ( A  e.  Fin  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A ) )
2 simpll 519 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
3 simpr 109 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  f :
n -onto-> A )
4 simplr 520 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  n  e.  om )
52, 3, 4fidcenumlemr 6920 . . . . . 6  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  /\  f : n -onto-> A )  ->  A  e.  Fin )
65ex 114 . . . . 5  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  ->  (
f : n -onto-> A  ->  A  e.  Fin ) )
76exlimdv 1807 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  n  e.  om )  ->  ( E. f  f :
n -onto-> A  ->  A  e. 
Fin ) )
87rexlimdva 2583 . . 3  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  ( E. n  e.  om  E. f  f : n -onto-> A  ->  A  e.  Fin )
)
98imp 123 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A )  ->  A  e.  Fin )
101, 9impbii 125 1  |-  ( A  e.  Fin  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e. 
om  E. f  f : n -onto-> A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104  DECID wdc 824   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   omcom 4567   -onto->wfo 5186   Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  finct  7081  ctinf  12363
  Copyright terms: Public domain W3C validator