ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi9 GIF version

Theorem sbthlemi9 7026
Description: Lemma for isbth 7028. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi9 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi9
StepHypRef Expression
1 simp2 1000 . . . . . . . . . 10 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑓:𝐴1-1𝐵)
2 df-f1 5260 . . . . . . . . . 10 (𝑓:𝐴1-1𝐵 ↔ (𝑓:𝐴𝐵 ∧ Fun 𝑓))
31, 2sylib 122 . . . . . . . . 9 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑓:𝐴𝐵 ∧ Fun 𝑓))
43simpld 112 . . . . . . . 8 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑓:𝐴𝐵)
5 df-f 5259 . . . . . . . 8 (𝑓:𝐴𝐵 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓𝐵))
64, 5sylib 122 . . . . . . 7 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑓 Fn 𝐴 ∧ ran 𝑓𝐵))
76simpld 112 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑓 Fn 𝐴)
8 df-fn 5258 . . . . . 6 (𝑓 Fn 𝐴 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝐴))
97, 8sylib 122 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (Fun 𝑓 ∧ dom 𝑓 = 𝐴))
109simpld 112 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝑓)
11 simp3 1001 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑔:𝐵1-1𝐴)
12 df-f1 5260 . . . . . 6 (𝑔:𝐵1-1𝐴 ↔ (𝑔:𝐵𝐴 ∧ Fun 𝑔))
1311, 12sylib 122 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑔:𝐵𝐴 ∧ Fun 𝑔))
1413simprd 114 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝑔)
15 sbthlem.1 . . . . 5 𝐴 ∈ V
16 sbthlem.2 . . . . 5 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
17 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
1815, 16, 17sbthlem7 7024 . . . 4 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
1910, 14, 18syl2anc 411 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝐻)
20 simp1 999 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → EXMID)
219simprd 114 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝑓 = 𝐴)
2213simpld 112 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑔:𝐵𝐴)
23 df-f 5259 . . . . . 6 (𝑔:𝐵𝐴 ↔ (𝑔 Fn 𝐵 ∧ ran 𝑔𝐴))
2422, 23sylib 122 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑔 Fn 𝐵 ∧ ran 𝑔𝐴))
2524simprd 114 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → ran 𝑔𝐴)
2615, 16, 17sbthlemi5 7022 . . . 4 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
2720, 21, 25, 26syl12anc 1247 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝐻 = 𝐴)
28 df-fn 5258 . . 3 (𝐻 Fn 𝐴 ↔ (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
2919, 27, 28sylanbrc 417 . 2 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻 Fn 𝐴)
303simprd 114 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝑓)
3124simpld 112 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑔 Fn 𝐵)
32 df-fn 5258 . . . . . 6 (𝑔 Fn 𝐵 ↔ (Fun 𝑔 ∧ dom 𝑔 = 𝐵))
3331, 32sylib 122 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (Fun 𝑔 ∧ dom 𝑔 = 𝐵))
3433, 25jca 306 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴))
3515, 16, 17sbthlemi8 7025 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
3620, 30, 34, 14, 35syl22anc 1250 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝐻)
376simprd 114 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → ran 𝑓𝐵)
3833simprd 114 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝑔 = 𝐵)
3938, 25jca 306 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴))
40 df-rn 4671 . . . . 5 ran 𝐻 = dom 𝐻
4115, 16, 17sbthlemi6 7023 . . . . 5 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
4240, 41eqtr3id 2240 . . . 4 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝐻 = 𝐵)
4320, 37, 39, 14, 42syl22anc 1250 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝐻 = 𝐵)
44 df-fn 5258 . . 3 (𝐻 Fn 𝐵 ↔ (Fun 𝐻 ∧ dom 𝐻 = 𝐵))
4536, 43, 44sylanbrc 417 . 2 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻 Fn 𝐵)
46 dff1o4 5509 . 2 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻 Fn 𝐴𝐻 Fn 𝐵))
4729, 45, 46sylanbrc 417 1 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  {cab 2179  Vcvv 2760  cdif 3151  cun 3152  wss 3154   cuni 3836  EXMIDwem 4224  ccnv 4659  dom cdm 4660  ran crn 4661  cres 4662  cima 4663  Fun wfun 5249   Fn wfn 5250  wf 5251  1-1wf1 5252  1-1-ontowf1o 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-exmid 4225  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262
This theorem is referenced by:  sbthlemi10  7027
  Copyright terms: Public domain W3C validator