ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi9 GIF version

Theorem sbthlemi9 6853
Description: Lemma for isbth 6855. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi9 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi9
StepHypRef Expression
1 simp2 982 . . . . . . . . . 10 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑓:𝐴1-1𝐵)
2 df-f1 5128 . . . . . . . . . 10 (𝑓:𝐴1-1𝐵 ↔ (𝑓:𝐴𝐵 ∧ Fun 𝑓))
31, 2sylib 121 . . . . . . . . 9 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑓:𝐴𝐵 ∧ Fun 𝑓))
43simpld 111 . . . . . . . 8 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑓:𝐴𝐵)
5 df-f 5127 . . . . . . . 8 (𝑓:𝐴𝐵 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓𝐵))
64, 5sylib 121 . . . . . . 7 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑓 Fn 𝐴 ∧ ran 𝑓𝐵))
76simpld 111 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑓 Fn 𝐴)
8 df-fn 5126 . . . . . 6 (𝑓 Fn 𝐴 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝐴))
97, 8sylib 121 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (Fun 𝑓 ∧ dom 𝑓 = 𝐴))
109simpld 111 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝑓)
11 simp3 983 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑔:𝐵1-1𝐴)
12 df-f1 5128 . . . . . 6 (𝑔:𝐵1-1𝐴 ↔ (𝑔:𝐵𝐴 ∧ Fun 𝑔))
1311, 12sylib 121 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑔:𝐵𝐴 ∧ Fun 𝑔))
1413simprd 113 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝑔)
15 sbthlem.1 . . . . 5 𝐴 ∈ V
16 sbthlem.2 . . . . 5 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
17 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
1815, 16, 17sbthlem7 6851 . . . 4 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
1910, 14, 18syl2anc 408 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝐻)
20 simp1 981 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → EXMID)
219simprd 113 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝑓 = 𝐴)
2213simpld 111 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑔:𝐵𝐴)
23 df-f 5127 . . . . . 6 (𝑔:𝐵𝐴 ↔ (𝑔 Fn 𝐵 ∧ ran 𝑔𝐴))
2422, 23sylib 121 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑔 Fn 𝐵 ∧ ran 𝑔𝐴))
2524simprd 113 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → ran 𝑔𝐴)
2615, 16, 17sbthlemi5 6849 . . . 4 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
2720, 21, 25, 26syl12anc 1214 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝐻 = 𝐴)
28 df-fn 5126 . . 3 (𝐻 Fn 𝐴 ↔ (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
2919, 27, 28sylanbrc 413 . 2 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻 Fn 𝐴)
303simprd 113 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝑓)
3124simpld 111 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑔 Fn 𝐵)
32 df-fn 5126 . . . . . 6 (𝑔 Fn 𝐵 ↔ (Fun 𝑔 ∧ dom 𝑔 = 𝐵))
3331, 32sylib 121 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (Fun 𝑔 ∧ dom 𝑔 = 𝐵))
3433, 25jca 304 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴))
3515, 16, 17sbthlemi8 6852 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
3620, 30, 34, 14, 35syl22anc 1217 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝐻)
376simprd 113 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → ran 𝑓𝐵)
3833simprd 113 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝑔 = 𝐵)
3938, 25jca 304 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴))
40 df-rn 4550 . . . . 5 ran 𝐻 = dom 𝐻
4115, 16, 17sbthlemi6 6850 . . . . 5 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
4240, 41syl5eqr 2186 . . . 4 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝐻 = 𝐵)
4320, 37, 39, 14, 42syl22anc 1217 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝐻 = 𝐵)
44 df-fn 5126 . . 3 (𝐻 Fn 𝐵 ↔ (Fun 𝐻 ∧ dom 𝐻 = 𝐵))
4536, 43, 44sylanbrc 413 . 2 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻 Fn 𝐵)
46 dff1o4 5375 . 2 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻 Fn 𝐴𝐻 Fn 𝐵))
4729, 45, 46sylanbrc 413 1 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  {cab 2125  Vcvv 2686  cdif 3068  cun 3069  wss 3071   cuni 3736  EXMIDwem 4118  ccnv 4538  dom cdm 4539  ran crn 4540  cres 4541  cima 4542  Fun wfun 5117   Fn wfn 5118  wf 5119  1-1wf1 5120  1-1-ontowf1o 5122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-exmid 4119  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130
This theorem is referenced by:  sbthlemi10  6854
  Copyright terms: Public domain W3C validator