ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi9 GIF version

Theorem sbthlemi9 6983
Description: Lemma for isbth 6985. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi9 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi9
StepHypRef Expression
1 simp2 1000 . . . . . . . . . 10 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑓:𝐴1-1𝐵)
2 df-f1 5236 . . . . . . . . . 10 (𝑓:𝐴1-1𝐵 ↔ (𝑓:𝐴𝐵 ∧ Fun 𝑓))
31, 2sylib 122 . . . . . . . . 9 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑓:𝐴𝐵 ∧ Fun 𝑓))
43simpld 112 . . . . . . . 8 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑓:𝐴𝐵)
5 df-f 5235 . . . . . . . 8 (𝑓:𝐴𝐵 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓𝐵))
64, 5sylib 122 . . . . . . 7 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑓 Fn 𝐴 ∧ ran 𝑓𝐵))
76simpld 112 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑓 Fn 𝐴)
8 df-fn 5234 . . . . . 6 (𝑓 Fn 𝐴 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝐴))
97, 8sylib 122 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (Fun 𝑓 ∧ dom 𝑓 = 𝐴))
109simpld 112 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝑓)
11 simp3 1001 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑔:𝐵1-1𝐴)
12 df-f1 5236 . . . . . 6 (𝑔:𝐵1-1𝐴 ↔ (𝑔:𝐵𝐴 ∧ Fun 𝑔))
1311, 12sylib 122 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑔:𝐵𝐴 ∧ Fun 𝑔))
1413simprd 114 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝑔)
15 sbthlem.1 . . . . 5 𝐴 ∈ V
16 sbthlem.2 . . . . 5 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
17 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
1815, 16, 17sbthlem7 6981 . . . 4 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
1910, 14, 18syl2anc 411 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝐻)
20 simp1 999 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → EXMID)
219simprd 114 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝑓 = 𝐴)
2213simpld 112 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑔:𝐵𝐴)
23 df-f 5235 . . . . . 6 (𝑔:𝐵𝐴 ↔ (𝑔 Fn 𝐵 ∧ ran 𝑔𝐴))
2422, 23sylib 122 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (𝑔 Fn 𝐵 ∧ ran 𝑔𝐴))
2524simprd 114 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → ran 𝑔𝐴)
2615, 16, 17sbthlemi5 6979 . . . 4 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
2720, 21, 25, 26syl12anc 1247 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝐻 = 𝐴)
28 df-fn 5234 . . 3 (𝐻 Fn 𝐴 ↔ (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
2919, 27, 28sylanbrc 417 . 2 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻 Fn 𝐴)
303simprd 114 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝑓)
3124simpld 112 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝑔 Fn 𝐵)
32 df-fn 5234 . . . . . 6 (𝑔 Fn 𝐵 ↔ (Fun 𝑔 ∧ dom 𝑔 = 𝐵))
3331, 32sylib 122 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (Fun 𝑔 ∧ dom 𝑔 = 𝐵))
3433, 25jca 306 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴))
3515, 16, 17sbthlemi8 6982 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
3620, 30, 34, 14, 35syl22anc 1250 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → Fun 𝐻)
376simprd 114 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → ran 𝑓𝐵)
3833simprd 114 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝑔 = 𝐵)
3938, 25jca 306 . . . 4 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴))
40 df-rn 4652 . . . . 5 ran 𝐻 = dom 𝐻
4115, 16, 17sbthlemi6 6980 . . . . 5 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
4240, 41eqtr3id 2236 . . . 4 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝐻 = 𝐵)
4320, 37, 39, 14, 42syl22anc 1250 . . 3 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → dom 𝐻 = 𝐵)
44 df-fn 5234 . . 3 (𝐻 Fn 𝐵 ↔ (Fun 𝐻 ∧ dom 𝐻 = 𝐵))
4536, 43, 44sylanbrc 417 . 2 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻 Fn 𝐵)
46 dff1o4 5484 . 2 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻 Fn 𝐴𝐻 Fn 𝐵))
4729, 45, 46sylanbrc 417 1 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2160  {cab 2175  Vcvv 2752  cdif 3141  cun 3142  wss 3144   cuni 3824  EXMIDwem 4209  ccnv 4640  dom cdm 4641  ran crn 4642  cres 4643  cima 4644  Fun wfun 5225   Fn wfn 5226  wf 5227  1-1wf1 5228  1-1-ontowf1o 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-exmid 4210  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238
This theorem is referenced by:  sbthlemi10  6984
  Copyright terms: Public domain W3C validator