ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2prod Unicode version

Theorem clim2prod 12050
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
clim2prod.1  |-  Z  =  ( ZZ>= `  M )
clim2prod.2  |-  ( ph  ->  N  e.  Z )
clim2prod.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2prod.4  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  A )
Assertion
Ref Expression
clim2prod  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  N )  x.  A
) )
Distinct variable groups:    A, k    k, F    ph, k    k, M   
k, N    k, Z

Proof of Theorem clim2prod
Dummy variables  v  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . 2  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2prod.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
3 uzssz 9742 . . . . 5  |-  ( ZZ>= `  M )  C_  ZZ
42, 3eqsstri 3256 . . . 4  |-  Z  C_  ZZ
5 clim2prod.2 . . . 4  |-  ( ph  ->  N  e.  Z )
64, 5sselid 3222 . . 3  |-  ( ph  ->  N  e.  ZZ )
76peano2zd 9572 . 2  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
8 clim2prod.4 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  A )
95, 2eleqtrdi 2322 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
10 eluzel2 9727 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
119, 10syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
12 clim2prod.3 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
132, 11, 12prodf 12049 . . 3  |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
1413, 5ffvelcdmd 5771 . 2  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
15 seqex 10671 . . 3  |-  seq M
(  x.  ,  F
)  e.  _V
1615a1i 9 . 2  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
_V )
17 peano2uz 9778 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
18 uzss 9743 . . . . . . . 8  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  ( N  +  1
) )  C_  ( ZZ>=
`  M ) )
199, 17, 183syl 17 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  ( ZZ>= `  M
) )
2019, 2sseqtrrdi 3273 . . . . . 6  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  Z )
2120sselda 3224 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
2221, 12syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
231, 7, 22prodf 12049 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
2423ffvelcdmda 5770 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  k
)  e.  CC )
25 fveq2 5627 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  ( N  +  1 ) ) )
26 fveq2 5627 . . . . . . 7  |-  ( x  =  ( N  + 
1 )  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  ( N  +  1 ) ) )
2726oveq2d 6017 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) ) ) )
2825, 27eqeq12d 2244 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  ( N  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) ) ) ) )
2928imbi2d 230 . . . 4  |-  ( x  =  ( N  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) ) ) ) )
30 fveq2 5627 . . . . . 6  |-  ( x  =  n  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  n
) )
31 fveq2 5627 . . . . . . 7  |-  ( x  =  n  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )
3231oveq2d 6017 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) ) )
3330, 32eqeq12d 2244 . . . . 5  |-  ( x  =  n  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  n )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) ) ) )
3433imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 n )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  n )
) ) ) )
35 fveq2 5627 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
36 fveq2 5627 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) )
3736oveq2d 6017 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) )
3835, 37eqeq12d 2244 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) ) )
3938imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( n  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( n  +  1 ) ) ) ) ) )
40 fveq2 5627 . . . . . 6  |-  ( x  =  k  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  k
) )
41 fveq2 5627 . . . . . . 7  |-  ( x  =  k  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  k
) )
4241oveq2d 6017 . . . . . 6  |-  ( x  =  k  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 k ) ) )
4340, 42eqeq12d 2244 . . . . 5  |-  ( x  =  k  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  k )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 k ) ) ) )
4443imbi2d 230 . . . 4  |-  ( x  =  k  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 k )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  k )
) ) ) )
452eleq2i 2296 . . . . . . . 8  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
4645, 12sylan2br 288 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
47 mulcl 8126 . . . . . . . 8  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
4847adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
499, 46, 48seq3p1 10687 . . . . . 6  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  ( F `  ( N  +  1 ) ) ) )
507, 22, 48seq3-1 10684 . . . . . . 7  |-  ( ph  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( F `  ( N  +  1 ) ) )
5150oveq2d 6017 . . . . . 6  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  ( F `  ( N  +  1 ) ) ) )
5249, 51eqtr4d 2265 . . . . 5  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) ) )
5352a1i 9 . . . 4  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  ( N  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  ( N  +  1 ) ) ) ) )
5419sselda 3224 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  n  e.  ( ZZ>= `  M )
)
5546adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
5647adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
5754, 55, 56seq3p1 10687 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
5857adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 n )  x.  ( F `  (
n  +  1 ) ) ) )
59 oveq1 6008 . . . . . . . . 9  |-  ( (  seq M (  x.  ,  F ) `  n )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) )  ->  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) )  =  ( ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) ) )
6059adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) )  =  ( ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  n )
)  x.  ( F `
 ( n  + 
1 ) ) ) )
6114adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
)  e.  CC )
6223ffvelcdmda 5770 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  n
)  e.  CC )
63 peano2uz 9778 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
6463, 2eleqtrrdi 2323 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  Z )
6554, 64syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( n  +  1 )  e.  Z )
6612ralrimiva 2603 . . . . . . . . . . . . 13  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
67 fveq2 5627 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
6867eleq1d 2298 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
6968rspcv 2903 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  Z  ->  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( F `  ( n  +  1 ) )  e.  CC ) )
7066, 69mpan9 281 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  +  1 )  e.  Z )  ->  ( F `  ( n  +  1 ) )  e.  CC )
7165, 70syldan 282 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  ( n  +  1 ) )  e.  CC )
7261, 62, 71mulassd 8170 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
7372adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
74 simpr 110 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  n  e.  ( ZZ>= `  ( N  +  1 ) ) )
7522adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
7674, 75, 56seq3p1 10687 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
7776oveq2d 6017 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  ( (  seq ( N  +  1 ) (  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
7877adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
7973, 78eqtr4d 2265 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) )
8058, 60, 793eqtrd 2266 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) )
8180exp31 364 . . . . . 6  |-  ( ph  ->  ( n  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8281com12 30 . . . . 5  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8382a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ( ph  ->  (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ph  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8429, 34, 39, 44, 53, 83uzind4 9783 . . 3  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  (  seq M (  x.  ,  F ) `
 k )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  k )
) ) )
8584impcom 125 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  k
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  k
) ) )
861, 7, 8, 14, 16, 24, 85climmulc2 11842 1  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  N )  x.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   1c1 8000    + caddc 8002    x. cmul 8004   ZZcz 9446   ZZ>=cuz 9722    seqcseq 10669    ~~> cli 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790
This theorem is referenced by:  ntrivcvgap  12059
  Copyright terms: Public domain W3C validator