ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2prod Unicode version

Theorem clim2prod 11704
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
clim2prod.1  |-  Z  =  ( ZZ>= `  M )
clim2prod.2  |-  ( ph  ->  N  e.  Z )
clim2prod.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2prod.4  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  A )
Assertion
Ref Expression
clim2prod  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  N )  x.  A
) )
Distinct variable groups:    A, k    k, F    ph, k    k, M   
k, N    k, Z

Proof of Theorem clim2prod
Dummy variables  v  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . 2  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2prod.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
3 uzssz 9621 . . . . 5  |-  ( ZZ>= `  M )  C_  ZZ
42, 3eqsstri 3215 . . . 4  |-  Z  C_  ZZ
5 clim2prod.2 . . . 4  |-  ( ph  ->  N  e.  Z )
64, 5sselid 3181 . . 3  |-  ( ph  ->  N  e.  ZZ )
76peano2zd 9451 . 2  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
8 clim2prod.4 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  A )
95, 2eleqtrdi 2289 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
10 eluzel2 9606 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
119, 10syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
12 clim2prod.3 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
132, 11, 12prodf 11703 . . 3  |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
1413, 5ffvelcdmd 5698 . 2  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
15 seqex 10541 . . 3  |-  seq M
(  x.  ,  F
)  e.  _V
1615a1i 9 . 2  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
_V )
17 peano2uz 9657 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
18 uzss 9622 . . . . . . . 8  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  ( N  +  1
) )  C_  ( ZZ>=
`  M ) )
199, 17, 183syl 17 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  ( ZZ>= `  M
) )
2019, 2sseqtrrdi 3232 . . . . . 6  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  Z )
2120sselda 3183 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
2221, 12syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
231, 7, 22prodf 11703 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
2423ffvelcdmda 5697 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  k
)  e.  CC )
25 fveq2 5558 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  ( N  +  1 ) ) )
26 fveq2 5558 . . . . . . 7  |-  ( x  =  ( N  + 
1 )  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  ( N  +  1 ) ) )
2726oveq2d 5938 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) ) ) )
2825, 27eqeq12d 2211 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  ( N  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) ) ) ) )
2928imbi2d 230 . . . 4  |-  ( x  =  ( N  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) ) ) ) )
30 fveq2 5558 . . . . . 6  |-  ( x  =  n  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  n
) )
31 fveq2 5558 . . . . . . 7  |-  ( x  =  n  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )
3231oveq2d 5938 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) ) )
3330, 32eqeq12d 2211 . . . . 5  |-  ( x  =  n  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  n )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) ) ) )
3433imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 n )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  n )
) ) ) )
35 fveq2 5558 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
36 fveq2 5558 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) )
3736oveq2d 5938 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) )
3835, 37eqeq12d 2211 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) ) )
3938imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( n  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( n  +  1 ) ) ) ) ) )
40 fveq2 5558 . . . . . 6  |-  ( x  =  k  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  k
) )
41 fveq2 5558 . . . . . . 7  |-  ( x  =  k  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  k
) )
4241oveq2d 5938 . . . . . 6  |-  ( x  =  k  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 k ) ) )
4340, 42eqeq12d 2211 . . . . 5  |-  ( x  =  k  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  k )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 k ) ) ) )
4443imbi2d 230 . . . 4  |-  ( x  =  k  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 k )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  k )
) ) ) )
452eleq2i 2263 . . . . . . . 8  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
4645, 12sylan2br 288 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
47 mulcl 8006 . . . . . . . 8  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
4847adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
499, 46, 48seq3p1 10557 . . . . . 6  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  ( F `  ( N  +  1 ) ) ) )
507, 22, 48seq3-1 10554 . . . . . . 7  |-  ( ph  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( F `  ( N  +  1 ) ) )
5150oveq2d 5938 . . . . . 6  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  ( F `  ( N  +  1 ) ) ) )
5249, 51eqtr4d 2232 . . . . 5  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) ) )
5352a1i 9 . . . 4  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  ( N  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  ( N  +  1 ) ) ) ) )
5419sselda 3183 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  n  e.  ( ZZ>= `  M )
)
5546adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
5647adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
5754, 55, 56seq3p1 10557 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
5857adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 n )  x.  ( F `  (
n  +  1 ) ) ) )
59 oveq1 5929 . . . . . . . . 9  |-  ( (  seq M (  x.  ,  F ) `  n )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) )  ->  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) )  =  ( ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) ) )
6059adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) )  =  ( ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  n )
)  x.  ( F `
 ( n  + 
1 ) ) ) )
6114adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
)  e.  CC )
6223ffvelcdmda 5697 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  n
)  e.  CC )
63 peano2uz 9657 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
6463, 2eleqtrrdi 2290 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  Z )
6554, 64syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( n  +  1 )  e.  Z )
6612ralrimiva 2570 . . . . . . . . . . . . 13  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
67 fveq2 5558 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
6867eleq1d 2265 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
6968rspcv 2864 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  Z  ->  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( F `  ( n  +  1 ) )  e.  CC ) )
7066, 69mpan9 281 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  +  1 )  e.  Z )  ->  ( F `  ( n  +  1 ) )  e.  CC )
7165, 70syldan 282 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  ( n  +  1 ) )  e.  CC )
7261, 62, 71mulassd 8050 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
7372adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
74 simpr 110 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  n  e.  ( ZZ>= `  ( N  +  1 ) ) )
7522adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
7674, 75, 56seq3p1 10557 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
7776oveq2d 5938 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  ( (  seq ( N  +  1 ) (  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
7877adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
7973, 78eqtr4d 2232 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) )
8058, 60, 793eqtrd 2233 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) )
8180exp31 364 . . . . . 6  |-  ( ph  ->  ( n  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8281com12 30 . . . . 5  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8382a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ( ph  ->  (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ph  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8429, 34, 39, 44, 53, 83uzind4 9662 . . 3  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  (  seq M (  x.  ,  F ) `
 k )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  k )
) ) )
8584impcom 125 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  k
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  k
) ) )
861, 7, 8, 14, 16, 24, 85climmulc2 11496 1  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  N )  x.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    C_ wss 3157   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   1c1 7880    + caddc 7882    x. cmul 7884   ZZcz 9326   ZZ>=cuz 9601    seqcseq 10539    ~~> cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444
This theorem is referenced by:  ntrivcvgap  11713
  Copyright terms: Public domain W3C validator