Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2prod Unicode version

Theorem clim2prod 11315
 Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
clim2prod.1
clim2prod.2
clim2prod.3
clim2prod.4
Assertion
Ref Expression
clim2prod
Distinct variable groups:   ,   ,   ,   ,   ,   ,

Proof of Theorem clim2prod
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . 2
2 clim2prod.1 . . . . 5
3 uzssz 9352 . . . . 5
42, 3eqsstri 3129 . . . 4
5 clim2prod.2 . . . 4
64, 5sseldi 3095 . . 3
76peano2zd 9183 . 2
8 clim2prod.4 . 2
95, 2eleqtrdi 2232 . . . . 5
10 eluzel2 9338 . . . . 5
119, 10syl 14 . . . 4
12 clim2prod.3 . . . 4
132, 11, 12prodf 11314 . . 3
1413, 5ffvelrnd 5556 . 2
15 seqex 10227 . . 3
1615a1i 9 . 2
17 peano2uz 9385 . . . . . . . 8
18 uzss 9353 . . . . . . . 8
199, 17, 183syl 17 . . . . . . 7
2019, 2sseqtrrdi 3146 . . . . . 6
2120sselda 3097 . . . . 5
2221, 12syldan 280 . . . 4
231, 7, 22prodf 11314 . . 3
2423ffvelrnda 5555 . 2
25 fveq2 5421 . . . . . 6
26 fveq2 5421 . . . . . . 7
2726oveq2d 5790 . . . . . 6
2825, 27eqeq12d 2154 . . . . 5
2928imbi2d 229 . . . 4
30 fveq2 5421 . . . . . 6
31 fveq2 5421 . . . . . . 7
3231oveq2d 5790 . . . . . 6
3330, 32eqeq12d 2154 . . . . 5
3433imbi2d 229 . . . 4
35 fveq2 5421 . . . . . 6
36 fveq2 5421 . . . . . . 7
3736oveq2d 5790 . . . . . 6
3835, 37eqeq12d 2154 . . . . 5
3938imbi2d 229 . . . 4
40 fveq2 5421 . . . . . 6
41 fveq2 5421 . . . . . . 7
4241oveq2d 5790 . . . . . 6
4340, 42eqeq12d 2154 . . . . 5
4443imbi2d 229 . . . 4
452eleq2i 2206 . . . . . . . 8
4645, 12sylan2br 286 . . . . . . 7
47 mulcl 7754 . . . . . . . 8
4847adantl 275 . . . . . . 7
499, 46, 48seq3p1 10242 . . . . . 6
507, 22, 48seq3-1 10240 . . . . . . 7
5150oveq2d 5790 . . . . . 6
5249, 51eqtr4d 2175 . . . . 5
5352a1i 9 . . . 4
5419sselda 3097 . . . . . . . . . 10
5546adantlr 468 . . . . . . . . . 10
5647adantl 275 . . . . . . . . . 10
5754, 55, 56seq3p1 10242 . . . . . . . . 9
5857adantr 274 . . . . . . . 8
59 oveq1 5781 . . . . . . . . 9
6059adantl 275 . . . . . . . 8
6114adantr 274 . . . . . . . . . . 11
6223ffvelrnda 5555 . . . . . . . . . . 11
63 peano2uz 9385 . . . . . . . . . . . . . 14
6463, 2eleqtrrdi 2233 . . . . . . . . . . . . 13
6554, 64syl 14 . . . . . . . . . . . 12
6612ralrimiva 2505 . . . . . . . . . . . . 13
67 fveq2 5421 . . . . . . . . . . . . . . 15
6867eleq1d 2208 . . . . . . . . . . . . . 14
6968rspcv 2785 . . . . . . . . . . . . 13
7066, 69mpan9 279 . . . . . . . . . . . 12
7165, 70syldan 280 . . . . . . . . . . 11
7261, 62, 71mulassd 7796 . . . . . . . . . 10
7372adantr 274 . . . . . . . . 9
74 simpr 109 . . . . . . . . . . . 12
7522adantlr 468 . . . . . . . . . . . 12
7674, 75, 56seq3p1 10242 . . . . . . . . . . 11
7776oveq2d 5790 . . . . . . . . . 10
7877adantr 274 . . . . . . . . 9
7973, 78eqtr4d 2175 . . . . . . . 8
8058, 60, 793eqtrd 2176 . . . . . . 7
8180exp31 361 . . . . . 6
8281com12 30 . . . . 5
8382a2d 26 . . . 4
8429, 34, 39, 44, 53, 83uzind4 9390 . . 3
8584impcom 124 . 2
861, 7, 8, 14, 16, 24, 85climmulc2 11107 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wceq 1331   wcel 1480  wral 2416  cvv 2686   wss 3071   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7625  c1 7628   caddc 7630   cmul 7632  cz 9061  cuz 9333   cseq 10225   cli 11054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-rp 9449  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055 This theorem is referenced by:  ntrivcvgap  11324
 Copyright terms: Public domain W3C validator