| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > clim2prod | Unicode version | ||
| Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| clim2prod.1 | 
 | 
| clim2prod.2 | 
 | 
| clim2prod.3 | 
 | 
| clim2prod.4 | 
 | 
| Ref | Expression | 
|---|---|
| clim2prod | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. 2
 | |
| 2 | clim2prod.1 | 
. . . . 5
 | |
| 3 | uzssz 9621 | 
. . . . 5
 | |
| 4 | 2, 3 | eqsstri 3215 | 
. . . 4
 | 
| 5 | clim2prod.2 | 
. . . 4
 | |
| 6 | 4, 5 | sselid 3181 | 
. . 3
 | 
| 7 | 6 | peano2zd 9451 | 
. 2
 | 
| 8 | clim2prod.4 | 
. 2
 | |
| 9 | 5, 2 | eleqtrdi 2289 | 
. . . . 5
 | 
| 10 | eluzel2 9606 | 
. . . . 5
 | |
| 11 | 9, 10 | syl 14 | 
. . . 4
 | 
| 12 | clim2prod.3 | 
. . . 4
 | |
| 13 | 2, 11, 12 | prodf 11703 | 
. . 3
 | 
| 14 | 13, 5 | ffvelcdmd 5698 | 
. 2
 | 
| 15 | seqex 10541 | 
. . 3
 | |
| 16 | 15 | a1i 9 | 
. 2
 | 
| 17 | peano2uz 9657 | 
. . . . . . . 8
 | |
| 18 | uzss 9622 | 
. . . . . . . 8
 | |
| 19 | 9, 17, 18 | 3syl 17 | 
. . . . . . 7
 | 
| 20 | 19, 2 | sseqtrrdi 3232 | 
. . . . . 6
 | 
| 21 | 20 | sselda 3183 | 
. . . . 5
 | 
| 22 | 21, 12 | syldan 282 | 
. . . 4
 | 
| 23 | 1, 7, 22 | prodf 11703 | 
. . 3
 | 
| 24 | 23 | ffvelcdmda 5697 | 
. 2
 | 
| 25 | fveq2 5558 | 
. . . . . 6
 | |
| 26 | fveq2 5558 | 
. . . . . . 7
 | |
| 27 | 26 | oveq2d 5938 | 
. . . . . 6
 | 
| 28 | 25, 27 | eqeq12d 2211 | 
. . . . 5
 | 
| 29 | 28 | imbi2d 230 | 
. . . 4
 | 
| 30 | fveq2 5558 | 
. . . . . 6
 | |
| 31 | fveq2 5558 | 
. . . . . . 7
 | |
| 32 | 31 | oveq2d 5938 | 
. . . . . 6
 | 
| 33 | 30, 32 | eqeq12d 2211 | 
. . . . 5
 | 
| 34 | 33 | imbi2d 230 | 
. . . 4
 | 
| 35 | fveq2 5558 | 
. . . . . 6
 | |
| 36 | fveq2 5558 | 
. . . . . . 7
 | |
| 37 | 36 | oveq2d 5938 | 
. . . . . 6
 | 
| 38 | 35, 37 | eqeq12d 2211 | 
. . . . 5
 | 
| 39 | 38 | imbi2d 230 | 
. . . 4
 | 
| 40 | fveq2 5558 | 
. . . . . 6
 | |
| 41 | fveq2 5558 | 
. . . . . . 7
 | |
| 42 | 41 | oveq2d 5938 | 
. . . . . 6
 | 
| 43 | 40, 42 | eqeq12d 2211 | 
. . . . 5
 | 
| 44 | 43 | imbi2d 230 | 
. . . 4
 | 
| 45 | 2 | eleq2i 2263 | 
. . . . . . . 8
 | 
| 46 | 45, 12 | sylan2br 288 | 
. . . . . . 7
 | 
| 47 | mulcl 8006 | 
. . . . . . . 8
 | |
| 48 | 47 | adantl 277 | 
. . . . . . 7
 | 
| 49 | 9, 46, 48 | seq3p1 10557 | 
. . . . . 6
 | 
| 50 | 7, 22, 48 | seq3-1 10554 | 
. . . . . . 7
 | 
| 51 | 50 | oveq2d 5938 | 
. . . . . 6
 | 
| 52 | 49, 51 | eqtr4d 2232 | 
. . . . 5
 | 
| 53 | 52 | a1i 9 | 
. . . 4
 | 
| 54 | 19 | sselda 3183 | 
. . . . . . . . . 10
 | 
| 55 | 46 | adantlr 477 | 
. . . . . . . . . 10
 | 
| 56 | 47 | adantl 277 | 
. . . . . . . . . 10
 | 
| 57 | 54, 55, 56 | seq3p1 10557 | 
. . . . . . . . 9
 | 
| 58 | 57 | adantr 276 | 
. . . . . . . 8
 | 
| 59 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 60 | 59 | adantl 277 | 
. . . . . . . 8
 | 
| 61 | 14 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 62 | 23 | ffvelcdmda 5697 | 
. . . . . . . . . . 11
 | 
| 63 | peano2uz 9657 | 
. . . . . . . . . . . . . 14
 | |
| 64 | 63, 2 | eleqtrrdi 2290 | 
. . . . . . . . . . . . 13
 | 
| 65 | 54, 64 | syl 14 | 
. . . . . . . . . . . 12
 | 
| 66 | 12 | ralrimiva 2570 | 
. . . . . . . . . . . . 13
 | 
| 67 | fveq2 5558 | 
. . . . . . . . . . . . . . 15
 | |
| 68 | 67 | eleq1d 2265 | 
. . . . . . . . . . . . . 14
 | 
| 69 | 68 | rspcv 2864 | 
. . . . . . . . . . . . 13
 | 
| 70 | 66, 69 | mpan9 281 | 
. . . . . . . . . . . 12
 | 
| 71 | 65, 70 | syldan 282 | 
. . . . . . . . . . 11
 | 
| 72 | 61, 62, 71 | mulassd 8050 | 
. . . . . . . . . 10
 | 
| 73 | 72 | adantr 276 | 
. . . . . . . . 9
 | 
| 74 | simpr 110 | 
. . . . . . . . . . . 12
 | |
| 75 | 22 | adantlr 477 | 
. . . . . . . . . . . 12
 | 
| 76 | 74, 75, 56 | seq3p1 10557 | 
. . . . . . . . . . 11
 | 
| 77 | 76 | oveq2d 5938 | 
. . . . . . . . . 10
 | 
| 78 | 77 | adantr 276 | 
. . . . . . . . 9
 | 
| 79 | 73, 78 | eqtr4d 2232 | 
. . . . . . . 8
 | 
| 80 | 58, 60, 79 | 3eqtrd 2233 | 
. . . . . . 7
 | 
| 81 | 80 | exp31 364 | 
. . . . . 6
 | 
| 82 | 81 | com12 30 | 
. . . . 5
 | 
| 83 | 82 | a2d 26 | 
. . . 4
 | 
| 84 | 29, 34, 39, 44, 53, 83 | uzind4 9662 | 
. . 3
 | 
| 85 | 84 | impcom 125 | 
. 2
 | 
| 86 | 1, 7, 8, 14, 16, 24, 85 | climmulc2 11496 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 | 
| This theorem is referenced by: ntrivcvgap 11713 | 
| Copyright terms: Public domain | W3C validator |