ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2prod Unicode version

Theorem clim2prod 11850
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
clim2prod.1  |-  Z  =  ( ZZ>= `  M )
clim2prod.2  |-  ( ph  ->  N  e.  Z )
clim2prod.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2prod.4  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  A )
Assertion
Ref Expression
clim2prod  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  N )  x.  A
) )
Distinct variable groups:    A, k    k, F    ph, k    k, M   
k, N    k, Z

Proof of Theorem clim2prod
Dummy variables  v  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . 2  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2prod.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
3 uzssz 9668 . . . . 5  |-  ( ZZ>= `  M )  C_  ZZ
42, 3eqsstri 3225 . . . 4  |-  Z  C_  ZZ
5 clim2prod.2 . . . 4  |-  ( ph  ->  N  e.  Z )
64, 5sselid 3191 . . 3  |-  ( ph  ->  N  e.  ZZ )
76peano2zd 9498 . 2  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
8 clim2prod.4 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  A )
95, 2eleqtrdi 2298 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
10 eluzel2 9653 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
119, 10syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
12 clim2prod.3 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
132, 11, 12prodf 11849 . . 3  |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
1413, 5ffvelcdmd 5716 . 2  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
15 seqex 10594 . . 3  |-  seq M
(  x.  ,  F
)  e.  _V
1615a1i 9 . 2  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
_V )
17 peano2uz 9704 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
18 uzss 9669 . . . . . . . 8  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  ( N  +  1
) )  C_  ( ZZ>=
`  M ) )
199, 17, 183syl 17 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  ( ZZ>= `  M
) )
2019, 2sseqtrrdi 3242 . . . . . 6  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  Z )
2120sselda 3193 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
2221, 12syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
231, 7, 22prodf 11849 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
2423ffvelcdmda 5715 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  k
)  e.  CC )
25 fveq2 5576 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  ( N  +  1 ) ) )
26 fveq2 5576 . . . . . . 7  |-  ( x  =  ( N  + 
1 )  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  ( N  +  1 ) ) )
2726oveq2d 5960 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) ) ) )
2825, 27eqeq12d 2220 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  ( N  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) ) ) ) )
2928imbi2d 230 . . . 4  |-  ( x  =  ( N  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) ) ) ) )
30 fveq2 5576 . . . . . 6  |-  ( x  =  n  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  n
) )
31 fveq2 5576 . . . . . . 7  |-  ( x  =  n  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )
3231oveq2d 5960 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) ) )
3330, 32eqeq12d 2220 . . . . 5  |-  ( x  =  n  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  n )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) ) ) )
3433imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 n )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  n )
) ) ) )
35 fveq2 5576 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
36 fveq2 5576 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) )
3736oveq2d 5960 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) )
3835, 37eqeq12d 2220 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) ) )
3938imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( n  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( n  +  1 ) ) ) ) ) )
40 fveq2 5576 . . . . . 6  |-  ( x  =  k  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  k
) )
41 fveq2 5576 . . . . . . 7  |-  ( x  =  k  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  k
) )
4241oveq2d 5960 . . . . . 6  |-  ( x  =  k  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 k ) ) )
4340, 42eqeq12d 2220 . . . . 5  |-  ( x  =  k  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  k )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 k ) ) ) )
4443imbi2d 230 . . . 4  |-  ( x  =  k  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 k )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  k )
) ) ) )
452eleq2i 2272 . . . . . . . 8  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
4645, 12sylan2br 288 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
47 mulcl 8052 . . . . . . . 8  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
4847adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
499, 46, 48seq3p1 10610 . . . . . 6  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  ( F `  ( N  +  1 ) ) ) )
507, 22, 48seq3-1 10607 . . . . . . 7  |-  ( ph  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( F `  ( N  +  1 ) ) )
5150oveq2d 5960 . . . . . 6  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  ( F `  ( N  +  1 ) ) ) )
5249, 51eqtr4d 2241 . . . . 5  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) ) )
5352a1i 9 . . . 4  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  ( N  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  ( N  +  1 ) ) ) ) )
5419sselda 3193 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  n  e.  ( ZZ>= `  M )
)
5546adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
5647adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
5754, 55, 56seq3p1 10610 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
5857adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 n )  x.  ( F `  (
n  +  1 ) ) ) )
59 oveq1 5951 . . . . . . . . 9  |-  ( (  seq M (  x.  ,  F ) `  n )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) )  ->  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) )  =  ( ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) ) )
6059adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) )  =  ( ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  n )
)  x.  ( F `
 ( n  + 
1 ) ) ) )
6114adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
)  e.  CC )
6223ffvelcdmda 5715 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  n
)  e.  CC )
63 peano2uz 9704 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
6463, 2eleqtrrdi 2299 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  Z )
6554, 64syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( n  +  1 )  e.  Z )
6612ralrimiva 2579 . . . . . . . . . . . . 13  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
67 fveq2 5576 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
6867eleq1d 2274 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
6968rspcv 2873 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  Z  ->  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( F `  ( n  +  1 ) )  e.  CC ) )
7066, 69mpan9 281 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  +  1 )  e.  Z )  ->  ( F `  ( n  +  1 ) )  e.  CC )
7165, 70syldan 282 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  ( n  +  1 ) )  e.  CC )
7261, 62, 71mulassd 8096 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
7372adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
74 simpr 110 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  n  e.  ( ZZ>= `  ( N  +  1 ) ) )
7522adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
7674, 75, 56seq3p1 10610 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
7776oveq2d 5960 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  ( (  seq ( N  +  1 ) (  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
7877adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
7973, 78eqtr4d 2241 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) )
8058, 60, 793eqtrd 2242 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) )
8180exp31 364 . . . . . 6  |-  ( ph  ->  ( n  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8281com12 30 . . . . 5  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8382a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ( ph  ->  (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ph  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8429, 34, 39, 44, 53, 83uzind4 9709 . . 3  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  (  seq M (  x.  ,  F ) `
 k )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  k )
) ) )
8584impcom 125 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  k
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  k
) ) )
861, 7, 8, 14, 16, 24, 85climmulc2 11642 1  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  N )  x.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   1c1 7926    + caddc 7928    x. cmul 7930   ZZcz 9372   ZZ>=cuz 9648    seqcseq 10592    ~~> cli 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590
This theorem is referenced by:  ntrivcvgap  11859
  Copyright terms: Public domain W3C validator