Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clim2prod | Unicode version |
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.) |
Ref | Expression |
---|---|
clim2prod.1 | |
clim2prod.2 | |
clim2prod.3 | |
clim2prod.4 |
Ref | Expression |
---|---|
clim2prod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 | |
2 | clim2prod.1 | . . . . 5 | |
3 | uzssz 9485 | . . . . 5 | |
4 | 2, 3 | eqsstri 3174 | . . . 4 |
5 | clim2prod.2 | . . . 4 | |
6 | 4, 5 | sselid 3140 | . . 3 |
7 | 6 | peano2zd 9316 | . 2 |
8 | clim2prod.4 | . 2 | |
9 | 5, 2 | eleqtrdi 2259 | . . . . 5 |
10 | eluzel2 9471 | . . . . 5 | |
11 | 9, 10 | syl 14 | . . . 4 |
12 | clim2prod.3 | . . . 4 | |
13 | 2, 11, 12 | prodf 11479 | . . 3 |
14 | 13, 5 | ffvelrnd 5621 | . 2 |
15 | seqex 10382 | . . 3 | |
16 | 15 | a1i 9 | . 2 |
17 | peano2uz 9521 | . . . . . . . 8 | |
18 | uzss 9486 | . . . . . . . 8 | |
19 | 9, 17, 18 | 3syl 17 | . . . . . . 7 |
20 | 19, 2 | sseqtrrdi 3191 | . . . . . 6 |
21 | 20 | sselda 3142 | . . . . 5 |
22 | 21, 12 | syldan 280 | . . . 4 |
23 | 1, 7, 22 | prodf 11479 | . . 3 |
24 | 23 | ffvelrnda 5620 | . 2 |
25 | fveq2 5486 | . . . . . 6 | |
26 | fveq2 5486 | . . . . . . 7 | |
27 | 26 | oveq2d 5858 | . . . . . 6 |
28 | 25, 27 | eqeq12d 2180 | . . . . 5 |
29 | 28 | imbi2d 229 | . . . 4 |
30 | fveq2 5486 | . . . . . 6 | |
31 | fveq2 5486 | . . . . . . 7 | |
32 | 31 | oveq2d 5858 | . . . . . 6 |
33 | 30, 32 | eqeq12d 2180 | . . . . 5 |
34 | 33 | imbi2d 229 | . . . 4 |
35 | fveq2 5486 | . . . . . 6 | |
36 | fveq2 5486 | . . . . . . 7 | |
37 | 36 | oveq2d 5858 | . . . . . 6 |
38 | 35, 37 | eqeq12d 2180 | . . . . 5 |
39 | 38 | imbi2d 229 | . . . 4 |
40 | fveq2 5486 | . . . . . 6 | |
41 | fveq2 5486 | . . . . . . 7 | |
42 | 41 | oveq2d 5858 | . . . . . 6 |
43 | 40, 42 | eqeq12d 2180 | . . . . 5 |
44 | 43 | imbi2d 229 | . . . 4 |
45 | 2 | eleq2i 2233 | . . . . . . . 8 |
46 | 45, 12 | sylan2br 286 | . . . . . . 7 |
47 | mulcl 7880 | . . . . . . . 8 | |
48 | 47 | adantl 275 | . . . . . . 7 |
49 | 9, 46, 48 | seq3p1 10397 | . . . . . 6 |
50 | 7, 22, 48 | seq3-1 10395 | . . . . . . 7 |
51 | 50 | oveq2d 5858 | . . . . . 6 |
52 | 49, 51 | eqtr4d 2201 | . . . . 5 |
53 | 52 | a1i 9 | . . . 4 |
54 | 19 | sselda 3142 | . . . . . . . . . 10 |
55 | 46 | adantlr 469 | . . . . . . . . . 10 |
56 | 47 | adantl 275 | . . . . . . . . . 10 |
57 | 54, 55, 56 | seq3p1 10397 | . . . . . . . . 9 |
58 | 57 | adantr 274 | . . . . . . . 8 |
59 | oveq1 5849 | . . . . . . . . 9 | |
60 | 59 | adantl 275 | . . . . . . . 8 |
61 | 14 | adantr 274 | . . . . . . . . . . 11 |
62 | 23 | ffvelrnda 5620 | . . . . . . . . . . 11 |
63 | peano2uz 9521 | . . . . . . . . . . . . . 14 | |
64 | 63, 2 | eleqtrrdi 2260 | . . . . . . . . . . . . 13 |
65 | 54, 64 | syl 14 | . . . . . . . . . . . 12 |
66 | 12 | ralrimiva 2539 | . . . . . . . . . . . . 13 |
67 | fveq2 5486 | . . . . . . . . . . . . . . 15 | |
68 | 67 | eleq1d 2235 | . . . . . . . . . . . . . 14 |
69 | 68 | rspcv 2826 | . . . . . . . . . . . . 13 |
70 | 66, 69 | mpan9 279 | . . . . . . . . . . . 12 |
71 | 65, 70 | syldan 280 | . . . . . . . . . . 11 |
72 | 61, 62, 71 | mulassd 7922 | . . . . . . . . . 10 |
73 | 72 | adantr 274 | . . . . . . . . 9 |
74 | simpr 109 | . . . . . . . . . . . 12 | |
75 | 22 | adantlr 469 | . . . . . . . . . . . 12 |
76 | 74, 75, 56 | seq3p1 10397 | . . . . . . . . . . 11 |
77 | 76 | oveq2d 5858 | . . . . . . . . . 10 |
78 | 77 | adantr 274 | . . . . . . . . 9 |
79 | 73, 78 | eqtr4d 2201 | . . . . . . . 8 |
80 | 58, 60, 79 | 3eqtrd 2202 | . . . . . . 7 |
81 | 80 | exp31 362 | . . . . . 6 |
82 | 81 | com12 30 | . . . . 5 |
83 | 82 | a2d 26 | . . . 4 |
84 | 29, 34, 39, 44, 53, 83 | uzind4 9526 | . . 3 |
85 | 84 | impcom 124 | . 2 |
86 | 1, 7, 8, 14, 16, 24, 85 | climmulc2 11272 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 cvv 2726 wss 3116 class class class wbr 3982 cfv 5188 (class class class)co 5842 cc 7751 c1 7754 caddc 7756 cmul 7758 cz 9191 cuz 9466 cseq 10380 cli 11219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 |
This theorem is referenced by: ntrivcvgap 11489 |
Copyright terms: Public domain | W3C validator |