ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2prod Unicode version

Theorem clim2prod 11682
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
clim2prod.1  |-  Z  =  ( ZZ>= `  M )
clim2prod.2  |-  ( ph  ->  N  e.  Z )
clim2prod.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2prod.4  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  A )
Assertion
Ref Expression
clim2prod  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  N )  x.  A
) )
Distinct variable groups:    A, k    k, F    ph, k    k, M   
k, N    k, Z

Proof of Theorem clim2prod
Dummy variables  v  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . 2  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2prod.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
3 uzssz 9612 . . . . 5  |-  ( ZZ>= `  M )  C_  ZZ
42, 3eqsstri 3211 . . . 4  |-  Z  C_  ZZ
5 clim2prod.2 . . . 4  |-  ( ph  ->  N  e.  Z )
64, 5sselid 3177 . . 3  |-  ( ph  ->  N  e.  ZZ )
76peano2zd 9442 . 2  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
8 clim2prod.4 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  A )
95, 2eleqtrdi 2286 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
10 eluzel2 9597 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
119, 10syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
12 clim2prod.3 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
132, 11, 12prodf 11681 . . 3  |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
1413, 5ffvelcdmd 5694 . 2  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
15 seqex 10520 . . 3  |-  seq M
(  x.  ,  F
)  e.  _V
1615a1i 9 . 2  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
_V )
17 peano2uz 9648 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
18 uzss 9613 . . . . . . . 8  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  ( N  +  1
) )  C_  ( ZZ>=
`  M ) )
199, 17, 183syl 17 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  ( ZZ>= `  M
) )
2019, 2sseqtrrdi 3228 . . . . . 6  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  Z )
2120sselda 3179 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
2221, 12syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
231, 7, 22prodf 11681 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
2423ffvelcdmda 5693 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  k
)  e.  CC )
25 fveq2 5554 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  ( N  +  1 ) ) )
26 fveq2 5554 . . . . . . 7  |-  ( x  =  ( N  + 
1 )  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  ( N  +  1 ) ) )
2726oveq2d 5934 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) ) ) )
2825, 27eqeq12d 2208 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  ( N  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) ) ) ) )
2928imbi2d 230 . . . 4  |-  ( x  =  ( N  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) ) ) ) )
30 fveq2 5554 . . . . . 6  |-  ( x  =  n  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  n
) )
31 fveq2 5554 . . . . . . 7  |-  ( x  =  n  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )
3231oveq2d 5934 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) ) )
3330, 32eqeq12d 2208 . . . . 5  |-  ( x  =  n  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  n )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) ) ) )
3433imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 n )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  n )
) ) ) )
35 fveq2 5554 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
36 fveq2 5554 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) )
3736oveq2d 5934 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) )
3835, 37eqeq12d 2208 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) ) )
3938imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( n  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( n  +  1 ) ) ) ) ) )
40 fveq2 5554 . . . . . 6  |-  ( x  =  k  ->  (  seq M (  x.  ,  F ) `  x
)  =  (  seq M (  x.  ,  F ) `  k
) )
41 fveq2 5554 . . . . . . 7  |-  ( x  =  k  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
)  =  (  seq ( N  +  1 ) (  x.  ,  F ) `  k
) )
4241oveq2d 5934 . . . . . 6  |-  ( x  =  k  ->  (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 k ) ) )
4340, 42eqeq12d 2208 . . . . 5  |-  ( x  =  k  ->  (
(  seq M (  x.  ,  F ) `  x )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 x ) )  <-> 
(  seq M (  x.  ,  F ) `  k )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 k ) ) ) )
4443imbi2d 230 . . . 4  |-  ( x  =  k  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  x
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  x
) ) )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 k )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  k )
) ) ) )
452eleq2i 2260 . . . . . . . 8  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
4645, 12sylan2br 288 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
47 mulcl 7999 . . . . . . . 8  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
4847adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
499, 46, 48seq3p1 10536 . . . . . 6  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  ( F `  ( N  +  1 ) ) ) )
507, 22, 48seq3-1 10533 . . . . . . 7  |-  ( ph  ->  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( F `  ( N  +  1 ) ) )
5150oveq2d 5934 . . . . . 6  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  ( F `  ( N  +  1 ) ) ) )
5249, 51eqtr4d 2229 . . . . 5  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( N  +  1 ) ) ) )
5352a1i 9 . . . 4  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  ( N  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  ( N  +  1 ) ) ) ) )
5419sselda 3179 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  n  e.  ( ZZ>= `  M )
)
5546adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
5647adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
5754, 55, 56seq3p1 10536 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
5857adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 n )  x.  ( F `  (
n  +  1 ) ) ) )
59 oveq1 5925 . . . . . . . . 9  |-  ( (  seq M (  x.  ,  F ) `  n )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 n ) )  ->  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) )  =  ( ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) ) )
6059adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) )  =  ( ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  n )
)  x.  ( F `
 ( n  + 
1 ) ) ) )
6114adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
)  e.  CC )
6223ffvelcdmda 5693 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  n
)  e.  CC )
63 peano2uz 9648 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
6463, 2eleqtrrdi 2287 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  Z )
6554, 64syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( n  +  1 )  e.  Z )
6612ralrimiva 2567 . . . . . . . . . . . . 13  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
67 fveq2 5554 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
6867eleq1d 2262 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
6968rspcv 2860 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  Z  ->  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( F `  ( n  +  1 ) )  e.  CC ) )
7066, 69mpan9 281 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  +  1 )  e.  Z )  ->  ( F `  ( n  +  1 ) )  e.  CC )
7165, 70syldan 282 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  ( n  +  1 ) )  e.  CC )
7261, 62, 71mulassd 8043 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
(  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
7372adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
74 simpr 110 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  n  e.  ( ZZ>= `  ( N  +  1 ) ) )
7522adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
7674, 75, 56seq3p1 10536 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
7776oveq2d 5934 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  ( (  seq ( N  +  1 ) (  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
7877adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (
(  seq ( N  + 
1 ) (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
7973, 78eqtr4d 2229 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  x.  ( F `  ( n  +  1 ) ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) )
8058, 60, 793eqtrd 2230 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  (  seq M (  x.  ,  F ) `  n
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `
 ( n  + 
1 ) ) ) )
8180exp31 364 . . . . . 6  |-  ( ph  ->  ( n  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8281com12 30 . . . . 5  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8382a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ( ph  ->  (  seq M
(  x.  ,  F
) `  n )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  n
) ) )  -> 
( ph  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
8429, 34, 39, 44, 53, 83uzind4 9653 . . 3  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  (  seq M (  x.  ,  F ) `
 k )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F
) `  k )
) ) )
8584impcom 125 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  k
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  k
) ) )
861, 7, 8, 14, 16, 24, 85climmulc2 11474 1  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  N )  x.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3153   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   1c1 7873    + caddc 7875    x. cmul 7877   ZZcz 9317   ZZ>=cuz 9592    seqcseq 10518    ~~> cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422
This theorem is referenced by:  ntrivcvgap  11691
  Copyright terms: Public domain W3C validator