ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssimaexg GIF version

Theorem ssimaexg 5381
Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007.)
Assertion
Ref Expression
ssimaexg ((𝐴𝐶 ∧ Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ssimaexg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imaeq2 4785 . . . . . 6 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
21sseq2d 3057 . . . . 5 (𝑦 = 𝐴 → (𝐵 ⊆ (𝐹𝑦) ↔ 𝐵 ⊆ (𝐹𝐴)))
32anbi2d 453 . . . 4 (𝑦 = 𝐴 → ((Fun 𝐹𝐵 ⊆ (𝐹𝑦)) ↔ (Fun 𝐹𝐵 ⊆ (𝐹𝐴))))
4 sseq2 3051 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
54anbi1d 454 . . . . 5 (𝑦 = 𝐴 → ((𝑥𝑦𝐵 = (𝐹𝑥)) ↔ (𝑥𝐴𝐵 = (𝐹𝑥))))
65exbidv 1754 . . . 4 (𝑦 = 𝐴 → (∃𝑥(𝑥𝑦𝐵 = (𝐹𝑥)) ↔ ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥))))
73, 6imbi12d 233 . . 3 (𝑦 = 𝐴 → (((Fun 𝐹𝐵 ⊆ (𝐹𝑦)) → ∃𝑥(𝑥𝑦𝐵 = (𝐹𝑥))) ↔ ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))))
8 vex 2625 . . . 4 𝑦 ∈ V
98ssimaex 5380 . . 3 ((Fun 𝐹𝐵 ⊆ (𝐹𝑦)) → ∃𝑥(𝑥𝑦𝐵 = (𝐹𝑥)))
107, 9vtoclg 2682 . 2 (𝐴𝐶 → ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥))))
11103impib 1142 1 ((𝐴𝐶 ∧ Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 925   = wceq 1290  wex 1427  wcel 1439  wss 3002  cima 4457  Fun wfun 5024
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2624  df-sbc 2844  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-fv 5038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator