![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssimaexg | GIF version |
Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007.) |
Ref | Expression |
---|---|
ssimaexg | ⊢ ((𝐴 ∈ 𝐶 ∧ Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq2 4785 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝐹 “ 𝑦) = (𝐹 “ 𝐴)) | |
2 | 1 | sseq2d 3057 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐵 ⊆ (𝐹 “ 𝑦) ↔ 𝐵 ⊆ (𝐹 “ 𝐴))) |
3 | 2 | anbi2d 453 | . . . 4 ⊢ (𝑦 = 𝐴 → ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) ↔ (Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)))) |
4 | sseq2 3051 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐴)) | |
5 | 4 | anbi1d 454 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ (𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
6 | 5 | exbidv 1754 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
7 | 3, 6 | imbi12d 233 | . . 3 ⊢ (𝑦 = 𝐴 → (((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) → ∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥))) ↔ ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))))) |
8 | vex 2625 | . . . 4 ⊢ 𝑦 ∈ V | |
9 | 8 | ssimaex 5380 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) → ∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥))) |
10 | 7, 9 | vtoclg 2682 | . 2 ⊢ (𝐴 ∈ 𝐶 → ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
11 | 10 | 3impib 1142 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 925 = wceq 1290 ∃wex 1427 ∈ wcel 1439 ⊆ wss 3002 “ cima 4457 Fun wfun 5024 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-pow 4017 ax-pr 4047 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2624 df-sbc 2844 df-un 3006 df-in 3008 df-ss 3015 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-br 3854 df-opab 3908 df-id 4131 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-rn 4465 df-res 4466 df-ima 4467 df-iota 4995 df-fun 5032 df-fn 5033 df-fv 5038 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |