Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssimaexg | GIF version |
Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007.) |
Ref | Expression |
---|---|
ssimaexg | ⊢ ((𝐴 ∈ 𝐶 ∧ Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq2 4942 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝐹 “ 𝑦) = (𝐹 “ 𝐴)) | |
2 | 1 | sseq2d 3172 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐵 ⊆ (𝐹 “ 𝑦) ↔ 𝐵 ⊆ (𝐹 “ 𝐴))) |
3 | 2 | anbi2d 460 | . . . 4 ⊢ (𝑦 = 𝐴 → ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) ↔ (Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)))) |
4 | sseq2 3166 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐴)) | |
5 | 4 | anbi1d 461 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ (𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
6 | 5 | exbidv 1813 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
7 | 3, 6 | imbi12d 233 | . . 3 ⊢ (𝑦 = 𝐴 → (((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) → ∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥))) ↔ ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))))) |
8 | vex 2729 | . . . 4 ⊢ 𝑦 ∈ V | |
9 | 8 | ssimaex 5547 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) → ∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥))) |
10 | 7, 9 | vtoclg 2786 | . 2 ⊢ (𝐴 ∈ 𝐶 → ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
11 | 10 | 3impib 1191 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ⊆ wss 3116 “ cima 4607 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: tgrest 12809 |
Copyright terms: Public domain | W3C validator |