ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssimaexg GIF version

Theorem ssimaexg 5548
Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007.)
Assertion
Ref Expression
ssimaexg ((𝐴𝐶 ∧ Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ssimaexg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imaeq2 4942 . . . . . 6 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
21sseq2d 3172 . . . . 5 (𝑦 = 𝐴 → (𝐵 ⊆ (𝐹𝑦) ↔ 𝐵 ⊆ (𝐹𝐴)))
32anbi2d 460 . . . 4 (𝑦 = 𝐴 → ((Fun 𝐹𝐵 ⊆ (𝐹𝑦)) ↔ (Fun 𝐹𝐵 ⊆ (𝐹𝐴))))
4 sseq2 3166 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
54anbi1d 461 . . . . 5 (𝑦 = 𝐴 → ((𝑥𝑦𝐵 = (𝐹𝑥)) ↔ (𝑥𝐴𝐵 = (𝐹𝑥))))
65exbidv 1813 . . . 4 (𝑦 = 𝐴 → (∃𝑥(𝑥𝑦𝐵 = (𝐹𝑥)) ↔ ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥))))
73, 6imbi12d 233 . . 3 (𝑦 = 𝐴 → (((Fun 𝐹𝐵 ⊆ (𝐹𝑦)) → ∃𝑥(𝑥𝑦𝐵 = (𝐹𝑥))) ↔ ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))))
8 vex 2729 . . . 4 𝑦 ∈ V
98ssimaex 5547 . . 3 ((Fun 𝐹𝐵 ⊆ (𝐹𝑦)) → ∃𝑥(𝑥𝑦𝐵 = (𝐹𝑥)))
107, 9vtoclg 2786 . 2 (𝐴𝐶 → ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥))))
11103impib 1191 1 ((𝐴𝐶 ∧ Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wex 1480  wcel 2136  wss 3116  cima 4607  Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  tgrest  12809
  Copyright terms: Public domain W3C validator