Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssimaexg | GIF version |
Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007.) |
Ref | Expression |
---|---|
ssimaexg | ⊢ ((𝐴 ∈ 𝐶 ∧ Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq2 4959 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝐹 “ 𝑦) = (𝐹 “ 𝐴)) | |
2 | 1 | sseq2d 3183 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐵 ⊆ (𝐹 “ 𝑦) ↔ 𝐵 ⊆ (𝐹 “ 𝐴))) |
3 | 2 | anbi2d 464 | . . . 4 ⊢ (𝑦 = 𝐴 → ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) ↔ (Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)))) |
4 | sseq2 3177 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐴)) | |
5 | 4 | anbi1d 465 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ (𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
6 | 5 | exbidv 1823 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
7 | 3, 6 | imbi12d 234 | . . 3 ⊢ (𝑦 = 𝐴 → (((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) → ∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥))) ↔ ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))))) |
8 | vex 2738 | . . . 4 ⊢ 𝑦 ∈ V | |
9 | 8 | ssimaex 5569 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) → ∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥))) |
10 | 7, 9 | vtoclg 2795 | . 2 ⊢ (𝐴 ∈ 𝐶 → ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
11 | 10 | 3impib 1201 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∃wex 1490 ∈ wcel 2146 ⊆ wss 3127 “ cima 4623 Fun wfun 5202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 |
This theorem is referenced by: tgrest 13240 |
Copyright terms: Public domain | W3C validator |