| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssimaexg | GIF version | ||
| Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007.) |
| Ref | Expression |
|---|---|
| ssimaexg | ⊢ ((𝐴 ∈ 𝐶 ∧ Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq2 5005 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝐹 “ 𝑦) = (𝐹 “ 𝐴)) | |
| 2 | 1 | sseq2d 3213 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐵 ⊆ (𝐹 “ 𝑦) ↔ 𝐵 ⊆ (𝐹 “ 𝐴))) |
| 3 | 2 | anbi2d 464 | . . . 4 ⊢ (𝑦 = 𝐴 → ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) ↔ (Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)))) |
| 4 | sseq2 3207 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐴)) | |
| 5 | 4 | anbi1d 465 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ (𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
| 6 | 5 | exbidv 1839 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
| 7 | 3, 6 | imbi12d 234 | . . 3 ⊢ (𝑦 = 𝐴 → (((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) → ∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥))) ↔ ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))))) |
| 8 | vex 2766 | . . . 4 ⊢ 𝑦 ∈ V | |
| 9 | 8 | ssimaex 5622 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝑦)) → ∃𝑥(𝑥 ⊆ 𝑦 ∧ 𝐵 = (𝐹 “ 𝑥))) |
| 10 | 7, 9 | vtoclg 2824 | . 2 ⊢ (𝐴 ∈ 𝐶 → ((Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥)))) |
| 11 | 10 | 3impib 1203 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ Fun 𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ⊆ wss 3157 “ cima 4666 Fun wfun 5252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 |
| This theorem is referenced by: tgrest 14405 |
| Copyright terms: Public domain | W3C validator |