ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxpbm GIF version

Theorem ssxpbm 5060
Description: A cross-product subclass relationship is equivalent to the relationship for its components. (Contributed by Jim Kingdon, 12-Dec-2018.)
Assertion
Ref Expression
ssxpbm (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem ssxpbm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpm 5046 . . . . . . . 8 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
2 dmxpm 4843 . . . . . . . . 9 (∃𝑏 𝑏𝐵 → dom (𝐴 × 𝐵) = 𝐴)
32adantl 277 . . . . . . . 8 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) → dom (𝐴 × 𝐵) = 𝐴)
41, 3sylbir 135 . . . . . . 7 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → dom (𝐴 × 𝐵) = 𝐴)
54adantr 276 . . . . . 6 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) = 𝐴)
6 dmss 4822 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷))
76adantl 277 . . . . . 6 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷))
85, 7eqsstrrd 3192 . . . . 5 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴 ⊆ dom (𝐶 × 𝐷))
9 dmxpss 5055 . . . . 5 dom (𝐶 × 𝐷) ⊆ 𝐶
108, 9sstrdi 3167 . . . 4 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴𝐶)
11 rnxpm 5054 . . . . . . . . 9 (∃𝑎 𝑎𝐴 → ran (𝐴 × 𝐵) = 𝐵)
1211adantr 276 . . . . . . . 8 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) → ran (𝐴 × 𝐵) = 𝐵)
131, 12sylbir 135 . . . . . . 7 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ran (𝐴 × 𝐵) = 𝐵)
1413adantr 276 . . . . . 6 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) = 𝐵)
15 rnss 4853 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷))
1615adantl 277 . . . . . 6 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷))
1714, 16eqsstrrd 3192 . . . . 5 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵 ⊆ ran (𝐶 × 𝐷))
18 rnxpss 5056 . . . . 5 ran (𝐶 × 𝐷) ⊆ 𝐷
1917, 18sstrdi 3167 . . . 4 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵𝐷)
2010, 19jca 306 . . 3 ((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → (𝐴𝐶𝐵𝐷))
2120ex 115 . 2 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → (𝐴𝐶𝐵𝐷)))
22 xpss12 4730 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷))
2321, 22impbid1 142 1 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  wss 3129   × cxp 4621  dom cdm 4623  ran crn 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-xp 4629  df-rel 4630  df-cnv 4631  df-dm 4633  df-rn 4634
This theorem is referenced by:  xp11m  5063
  Copyright terms: Public domain W3C validator