![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucinc | GIF version |
Description: Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.) |
Ref | Expression |
---|---|
sucinc.1 | ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) |
Ref | Expression |
---|---|
sucinc | ⊢ ∀𝑥 𝑥 ⊆ (𝐹‘𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssucid 4447 | . . 3 ⊢ 𝑥 ⊆ suc 𝑥 | |
2 | vex 2763 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | sucex 4532 | . . . 4 ⊢ suc 𝑥 ∈ V |
4 | suceq 4434 | . . . . 5 ⊢ (𝑧 = 𝑥 → suc 𝑧 = suc 𝑥) | |
5 | sucinc.1 | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) | |
6 | 4, 5 | fvmptg 5634 | . . . 4 ⊢ ((𝑥 ∈ V ∧ suc 𝑥 ∈ V) → (𝐹‘𝑥) = suc 𝑥) |
7 | 2, 3, 6 | mp2an 426 | . . 3 ⊢ (𝐹‘𝑥) = suc 𝑥 |
8 | 1, 7 | sseqtrri 3215 | . 2 ⊢ 𝑥 ⊆ (𝐹‘𝑥) |
9 | 8 | ax-gen 1460 | 1 ⊢ ∀𝑥 𝑥 ⊆ (𝐹‘𝑥) |
Colors of variables: wff set class |
Syntax hints: ∀wal 1362 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 ↦ cmpt 4091 suc csuc 4397 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |