ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc GIF version

Theorem sucinc 6436
Description: Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.)
Hypothesis
Ref Expression
sucinc.1 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
Assertion
Ref Expression
sucinc 𝑥 𝑥 ⊆ (𝐹𝑥)
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑧)

Proof of Theorem sucinc
StepHypRef Expression
1 sssucid 4409 . . 3 𝑥 ⊆ suc 𝑥
2 vex 2738 . . . 4 𝑥 ∈ V
32sucex 4492 . . . 4 suc 𝑥 ∈ V
4 suceq 4396 . . . . 5 (𝑧 = 𝑥 → suc 𝑧 = suc 𝑥)
5 sucinc.1 . . . . 5 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
64, 5fvmptg 5584 . . . 4 ((𝑥 ∈ V ∧ suc 𝑥 ∈ V) → (𝐹𝑥) = suc 𝑥)
72, 3, 6mp2an 426 . . 3 (𝐹𝑥) = suc 𝑥
81, 7sseqtrri 3188 . 2 𝑥 ⊆ (𝐹𝑥)
98ax-gen 1447 1 𝑥 𝑥 ⊆ (𝐹𝑥)
Colors of variables: wff set class
Syntax hints:  wal 1351   = wceq 1353  wcel 2146  Vcvv 2735  wss 3127  cmpt 4059  suc csuc 4359  cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-suc 4365  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator