ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc GIF version

Theorem sucinc 6446
Description: Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.)
Hypothesis
Ref Expression
sucinc.1 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
Assertion
Ref Expression
sucinc 𝑥 𝑥 ⊆ (𝐹𝑥)
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑧)

Proof of Theorem sucinc
StepHypRef Expression
1 sssucid 4416 . . 3 𝑥 ⊆ suc 𝑥
2 vex 2741 . . . 4 𝑥 ∈ V
32sucex 4499 . . . 4 suc 𝑥 ∈ V
4 suceq 4403 . . . . 5 (𝑧 = 𝑥 → suc 𝑧 = suc 𝑥)
5 sucinc.1 . . . . 5 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
64, 5fvmptg 5593 . . . 4 ((𝑥 ∈ V ∧ suc 𝑥 ∈ V) → (𝐹𝑥) = suc 𝑥)
72, 3, 6mp2an 426 . . 3 (𝐹𝑥) = suc 𝑥
81, 7sseqtrri 3191 . 2 𝑥 ⊆ (𝐹𝑥)
98ax-gen 1449 1 𝑥 𝑥 ⊆ (𝐹𝑥)
Colors of variables: wff set class
Syntax hints:  wal 1351   = wceq 1353  wcel 2148  Vcvv 2738  wss 3130  cmpt 4065  suc csuc 4366  cfv 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-suc 4372  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator