| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucinc | GIF version | ||
| Description: Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| sucinc.1 | ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) |
| Ref | Expression |
|---|---|
| sucinc | ⊢ ∀𝑥 𝑥 ⊆ (𝐹‘𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid 4506 | . . 3 ⊢ 𝑥 ⊆ suc 𝑥 | |
| 2 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | sucex 4591 | . . . 4 ⊢ suc 𝑥 ∈ V |
| 4 | suceq 4493 | . . . . 5 ⊢ (𝑧 = 𝑥 → suc 𝑧 = suc 𝑥) | |
| 5 | sucinc.1 | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) | |
| 6 | 4, 5 | fvmptg 5710 | . . . 4 ⊢ ((𝑥 ∈ V ∧ suc 𝑥 ∈ V) → (𝐹‘𝑥) = suc 𝑥) |
| 7 | 2, 3, 6 | mp2an 426 | . . 3 ⊢ (𝐹‘𝑥) = suc 𝑥 |
| 8 | 1, 7 | sseqtrri 3259 | . 2 ⊢ 𝑥 ⊆ (𝐹‘𝑥) |
| 9 | 8 | ax-gen 1495 | 1 ⊢ ∀𝑥 𝑥 ⊆ (𝐹‘𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1393 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ↦ cmpt 4145 suc csuc 4456 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |