| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucinc | GIF version | ||
| Description: Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| sucinc.1 | ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) |
| Ref | Expression |
|---|---|
| sucinc | ⊢ ∀𝑥 𝑥 ⊆ (𝐹‘𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid 4461 | . . 3 ⊢ 𝑥 ⊆ suc 𝑥 | |
| 2 | vex 2774 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | sucex 4546 | . . . 4 ⊢ suc 𝑥 ∈ V |
| 4 | suceq 4448 | . . . . 5 ⊢ (𝑧 = 𝑥 → suc 𝑧 = suc 𝑥) | |
| 5 | sucinc.1 | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) | |
| 6 | 4, 5 | fvmptg 5654 | . . . 4 ⊢ ((𝑥 ∈ V ∧ suc 𝑥 ∈ V) → (𝐹‘𝑥) = suc 𝑥) |
| 7 | 2, 3, 6 | mp2an 426 | . . 3 ⊢ (𝐹‘𝑥) = suc 𝑥 |
| 8 | 1, 7 | sseqtrri 3227 | . 2 ⊢ 𝑥 ⊆ (𝐹‘𝑥) |
| 9 | 8 | ax-gen 1471 | 1 ⊢ ∀𝑥 𝑥 ⊆ (𝐹‘𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1370 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ⊆ wss 3165 ↦ cmpt 4104 suc csuc 4411 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |