ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc GIF version

Theorem sucinc 6413
Description: Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.)
Hypothesis
Ref Expression
sucinc.1 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
Assertion
Ref Expression
sucinc 𝑥 𝑥 ⊆ (𝐹𝑥)
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑧)

Proof of Theorem sucinc
StepHypRef Expression
1 sssucid 4393 . . 3 𝑥 ⊆ suc 𝑥
2 vex 2729 . . . 4 𝑥 ∈ V
32sucex 4476 . . . 4 suc 𝑥 ∈ V
4 suceq 4380 . . . . 5 (𝑧 = 𝑥 → suc 𝑧 = suc 𝑥)
5 sucinc.1 . . . . 5 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
64, 5fvmptg 5562 . . . 4 ((𝑥 ∈ V ∧ suc 𝑥 ∈ V) → (𝐹𝑥) = suc 𝑥)
72, 3, 6mp2an 423 . . 3 (𝐹𝑥) = suc 𝑥
81, 7sseqtrri 3177 . 2 𝑥 ⊆ (𝐹𝑥)
98ax-gen 1437 1 𝑥 𝑥 ⊆ (𝐹𝑥)
Colors of variables: wff set class
Syntax hints:  wal 1341   = wceq 1343  wcel 2136  Vcvv 2726  wss 3116  cmpt 4043  suc csuc 4343  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator