ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc GIF version

Theorem sucinc 6512
Description: Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.)
Hypothesis
Ref Expression
sucinc.1 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
Assertion
Ref Expression
sucinc 𝑥 𝑥 ⊆ (𝐹𝑥)
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑧)

Proof of Theorem sucinc
StepHypRef Expression
1 sssucid 4451 . . 3 𝑥 ⊆ suc 𝑥
2 vex 2766 . . . 4 𝑥 ∈ V
32sucex 4536 . . . 4 suc 𝑥 ∈ V
4 suceq 4438 . . . . 5 (𝑧 = 𝑥 → suc 𝑧 = suc 𝑥)
5 sucinc.1 . . . . 5 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
64, 5fvmptg 5640 . . . 4 ((𝑥 ∈ V ∧ suc 𝑥 ∈ V) → (𝐹𝑥) = suc 𝑥)
72, 3, 6mp2an 426 . . 3 (𝐹𝑥) = suc 𝑥
81, 7sseqtrri 3219 . 2 𝑥 ⊆ (𝐹𝑥)
98ax-gen 1463 1 𝑥 𝑥 ⊆ (𝐹𝑥)
Colors of variables: wff set class
Syntax hints:  wal 1362   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  cmpt 4095  suc csuc 4401  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator