![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfr1on | GIF version |
Description: Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 12-Mar-2022.) |
Ref | Expression |
---|---|
tfr1on.f | ⊢ 𝐹 = recs(𝐺) |
tfr1on.g | ⊢ (𝜑 → Fun 𝐺) |
tfr1on.x | ⊢ (𝜑 → Ord 𝑋) |
tfr1on.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
tfr1on.u | ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
tfr1on.yx | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
Ref | Expression |
---|---|
tfr1on | ⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfr1on.f | . 2 ⊢ 𝐹 = recs(𝐺) | |
2 | tfr1on.g | . 2 ⊢ (𝜑 → Fun 𝐺) | |
3 | tfr1on.x | . 2 ⊢ (𝜑 → Ord 𝑋) | |
4 | tfr1on.ex | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | |
5 | eqid 2193 | . . 3 ⊢ {𝑎 ∣ ∃𝑏 ∈ 𝑋 (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ 𝑋 (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} | |
6 | 5 | tfr1onlem3 6391 | . 2 ⊢ {𝑎 ∣ ∃𝑏 ∈ 𝑋 (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
7 | tfr1on.u | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | |
8 | tfr1on.yx | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
9 | 1, 2, 3, 4, 6, 7, 8 | tfr1onlemres 6402 | 1 ⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 ∃wrex 2473 Vcvv 2760 ⊆ wss 3153 ∪ cuni 3835 Ord word 4393 suc csuc 4396 dom cdm 4659 ↾ cres 4661 Fun wfun 5248 Fn wfn 5249 ‘cfv 5254 recscrecs 6357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-recs 6358 |
This theorem is referenced by: tfri1dALT 6404 |
Copyright terms: Public domain | W3C validator |