| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1on | GIF version | ||
| Description: Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1on.f | ⊢ 𝐹 = recs(𝐺) |
| tfr1on.g | ⊢ (𝜑 → Fun 𝐺) |
| tfr1on.x | ⊢ (𝜑 → Ord 𝑋) |
| tfr1on.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
| tfr1on.u | ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
| tfr1on.yx | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| tfr1on | ⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr1on.f | . 2 ⊢ 𝐹 = recs(𝐺) | |
| 2 | tfr1on.g | . 2 ⊢ (𝜑 → Fun 𝐺) | |
| 3 | tfr1on.x | . 2 ⊢ (𝜑 → Ord 𝑋) | |
| 4 | tfr1on.ex | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | |
| 5 | eqid 2204 | . . 3 ⊢ {𝑎 ∣ ∃𝑏 ∈ 𝑋 (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ 𝑋 (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} | |
| 6 | 5 | tfr1onlem3 6423 | . 2 ⊢ {𝑎 ∣ ∃𝑏 ∈ 𝑋 (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| 7 | tfr1on.u | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | |
| 8 | tfr1on.yx | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 9 | 1, 2, 3, 4, 6, 7, 8 | tfr1onlemres 6434 | 1 ⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 {cab 2190 ∀wral 2483 ∃wrex 2484 Vcvv 2771 ⊆ wss 3165 ∪ cuni 3849 Ord word 4408 suc csuc 4411 dom cdm 4674 ↾ cres 4676 Fun wfun 5264 Fn wfn 5265 ‘cfv 5270 recscrecs 6389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-recs 6390 |
| This theorem is referenced by: tfri1dALT 6436 |
| Copyright terms: Public domain | W3C validator |