| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tposco | GIF version | ||
| Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| tposco | ⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coass 5210 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) | |
| 2 | dftpos4 6362 | . 2 ⊢ tpos (𝐹 ∘ 𝐺) = ((𝐹 ∘ 𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 3 | dftpos4 6362 | . . 3 ⊢ tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 4 | 3 | coeq2i 4846 | . 2 ⊢ (𝐹 ∘ tpos 𝐺) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
| 5 | 1, 2, 4 | 3eqtr4i 2237 | 1 ⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Vcvv 2773 ∪ cun 3168 ∅c0 3464 {csn 3638 ∪ cuni 3856 ↦ cmpt 4113 × cxp 4681 ◡ccnv 4682 ∘ ccom 4687 tpos ctpos 6343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-tpos 6344 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |