![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tposco | GIF version |
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
tposco | ⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coass 5185 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) | |
2 | dftpos4 6318 | . 2 ⊢ tpos (𝐹 ∘ 𝐺) = ((𝐹 ∘ 𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
3 | dftpos4 6318 | . . 3 ⊢ tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
4 | 3 | coeq2i 4823 | . 2 ⊢ (𝐹 ∘ tpos 𝐺) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
5 | 1, 2, 4 | 3eqtr4i 2224 | 1 ⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 Vcvv 2760 ∪ cun 3152 ∅c0 3447 {csn 3619 ∪ cuni 3836 ↦ cmpt 4091 × cxp 4658 ◡ccnv 4659 ∘ ccom 4664 tpos ctpos 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-tpos 6300 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |