Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tposco | GIF version |
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
tposco | ⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coass 5122 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) | |
2 | dftpos4 6231 | . 2 ⊢ tpos (𝐹 ∘ 𝐺) = ((𝐹 ∘ 𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
3 | dftpos4 6231 | . . 3 ⊢ tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
4 | 3 | coeq2i 4764 | . 2 ⊢ (𝐹 ∘ tpos 𝐺) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
5 | 1, 2, 4 | 3eqtr4i 2196 | 1 ⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 Vcvv 2726 ∪ cun 3114 ∅c0 3409 {csn 3576 ∪ cuni 3789 ↦ cmpt 4043 × cxp 4602 ◡ccnv 4603 ∘ ccom 4608 tpos ctpos 6212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-tpos 6213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |