![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tposco | GIF version |
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
tposco | ⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coass 5147 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) | |
2 | dftpos4 6263 | . 2 ⊢ tpos (𝐹 ∘ 𝐺) = ((𝐹 ∘ 𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
3 | dftpos4 6263 | . . 3 ⊢ tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
4 | 3 | coeq2i 4787 | . 2 ⊢ (𝐹 ∘ tpos 𝐺) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
5 | 1, 2, 4 | 3eqtr4i 2208 | 1 ⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 Vcvv 2737 ∪ cun 3127 ∅c0 3422 {csn 3592 ∪ cuni 3809 ↦ cmpt 4064 × cxp 4624 ◡ccnv 4625 ∘ ccom 4630 tpos ctpos 6244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-fv 5224 df-tpos 6245 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |