ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xgepnf Unicode version

Theorem xgepnf 9834
Description: An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Assertion
Ref Expression
xgepnf  |-  ( A  e.  RR*  ->  ( +oo  <_  A  <->  A  = +oo ) )

Proof of Theorem xgepnf
StepHypRef Expression
1 pnfxr 8028 . . 3  |- +oo  e.  RR*
2 xrlenlt 8040 . . 3  |-  ( ( +oo  e.  RR*  /\  A  e.  RR* )  ->  ( +oo  <_  A  <->  -.  A  < +oo ) )
31, 2mpan 424 . 2  |-  ( A  e.  RR*  ->  ( +oo  <_  A  <->  -.  A  < +oo ) )
4 nltpnft 9832 . 2  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )
53, 4bitr4d 191 1  |-  ( A  e.  RR*  ->  ( +oo  <_  A  <->  A  = +oo ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2160   class class class wbr 4018   +oocpnf 8007   RR*cxr 8009    < clt 8010    <_ cle 8011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-pre-ltirr 7941
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4647  df-cnv 4649  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016
This theorem is referenced by:  xnn0lenn0nn0  9883  xleaddadd  9905
  Copyright terms: Public domain W3C validator