ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xgepnf GIF version

Theorem xgepnf 9973
Description: An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Assertion
Ref Expression
xgepnf (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))

Proof of Theorem xgepnf
StepHypRef Expression
1 pnfxr 8160 . . 3 +∞ ∈ ℝ*
2 xrlenlt 8172 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ*) → (+∞ ≤ 𝐴 ↔ ¬ 𝐴 < +∞))
31, 2mpan 424 . 2 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ ¬ 𝐴 < +∞))
4 nltpnft 9971 . 2 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
53, 4bitr4d 191 1 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1373  wcel 2178   class class class wbr 4059  +∞cpnf 8139  *cxr 8141   < clt 8142  cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by:  xnn0lenn0nn0  10022  xleaddadd  10044  xqltnle  10447
  Copyright terms: Public domain W3C validator